Skip to main content
Log in

Enumeration of substitutional isomers with restrictive mutual positions of ligands: I. Overall counts

Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We address systematics for the enumeration of substitutional isomers when there is constrained positioning of ligands on a molecular skeleton. One constraint involves ‘restrictive ligands’ where two of the same kind are forbidden to occupy adjacent sites in a molecular skeleton. This may arise because of steric hindrance, or because of groups which in neighbor proximity react to eliminate one. For instance, no pair of –OH groups attach to the same C atom in a molecular skeleton. In another case, malonic acid residues decarboxylate leaving no more than one decarboxylation in each residue. The enumeration with such restrictive ligands may be addressed via a Polya-theoretic cycle index hybridized with the graph-theoretic independence polynomial (when there is just a single such neighbor-excluding ligand and another which is not), while more generally a hybridization with the chromatic polynomial is needed. Another substitional-isomer constraint involves bidentate ligands, with each ligand-part occupying adjacent sites, and possibly also with additional separate unidentate ligands. Here, the set of all pure & mixed such ligand placements is analytically represented by a ‘symmetry-reduced’ matching polynomial (which is a hybrid now of the matching polynomial and Polya’s cycle index). This result gives the generating function for isomer enumeration, taking into account every possible so-restricted assortment of the employed ligands. Here we make such novel hybridizations (for these and other graphtheoretic polynomials) to deal with such oft-encountered chemical problems, which nevertheless transcend typical earlier unconstrained formulizations. Further subsymmetry classification & enumerations, along with examples are considered in a further article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. G. Pólya, Kombinatorische Anzahlbestimungen für Gruppen, Graphen und chemische Verbindungen. Acta Math. 68, 145–254 (1937). See English translation in: G. Pólya and R. C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds, Springer, Berlin, 1987. Russian translation in: Perechislitel’nye Zadachi Kombinatornogo Analiza (Sbornik Perevodov) = Enumeration Problems of Combinatorial Analysis (Collections of Translations) (G. P. Gavrilov, ed.), Mir, Moscow, 1979, pp. 36–136

  2. Kerber A.: Algebraic Combinatorics via Finite Group Actions. Wissenschaftsverlag, Manheim, Wien (1991)

    Google Scholar 

  3. Kerber A.: Applied Finite Group Actions. Springer, Berlin (1999)

    Google Scholar 

  4. Harary F., Palmer E.M.: Graphical Enumeration. Academic Press, New York (1973)

    Google Scholar 

  5. Ruch E., Hässelbarth W., Richter B.: Doppelnebenklassen als Klassenbegriff und Nomenklaturprinzip für Isomere und ihre Abzälung. Theoret. Chim. Acta 19(3/5), 288–300 (1970)

    Article  CAS  Google Scholar 

  6. De Bruijn N.G.: A Survey of generalizations of Pólya’s enumeration theorem. Niew Archief voor Wiskunde 19(2), 89–112 (1971)

    Google Scholar 

  7. Balaban , A.T. (eds): Chemical Applications of Graph Theory. Academic Press, London (1976)

    Google Scholar 

  8. Balasubramanian K.: Applications of combinatorics and graph theory to spectroscopy and quantum chemistry. Chem. Rev. 85, 599–618 (1985)

    Article  CAS  Google Scholar 

  9. Fujita S.: Symmetry and Combinatorial Enumeration in Chemistry. Springer, Berlin (1991)

    Book  Google Scholar 

  10. El-Basil S.: Combinatorial Organic Chemistry. Nova Science Publishers, Huntington (1999)

    Google Scholar 

  11. Kerber A.: Enumeration under finite group action, basic tools, results and methods. MATCH Commun. Math. Comput. Chem. 46, 151–198 (2002)

    CAS  Google Scholar 

  12. Klein D.J., Cowley A.H.: Permutational isomerism with bidentate ligands and other constraints. J. Am. Chem. Soc. 100, 2593–2599 (1978)

    Article  CAS  Google Scholar 

  13. D.J. Klein, A. Ryzhov, and V. Rosenfeld, Permutational isomers on a molecular skeleton with neighbor-excluding ligands. J. Math. Chem. 45(4), 892–909 (2008). Erratum, ibid., p. 910

    Google Scholar 

  14. Rota G.-C., Smith D.A.: Enumeration under group action. Ann. Sci. Norm. Super. Pisa. Cl. Sci., Ser. 4, 637–646 (1977)

    Google Scholar 

  15. V.R. Rosenfeld, Yet another generalization of Pólya’s theorem: Enumerating equivalence classes of objects with a prescribed monoid of endomorphisms. MATCH Commun. Math. Comput. Chem. 43, 111–130 (2001) (see Erratum on p. 125: A lost multiplier s just after the sign ∑ in (16)!)

  16. V.R. Rosenfeld, Resolving a combinatorial problem of crystallography. Deposited in VINITI, 16.09.82, no. 4877–82 Dep., 1982 (Russian)

  17. V.R. Rosenfeld, The generalized Pólya’s theorem (A novel approach for enumerating equivalence classes of objects with a prescribed automorphism subgroup), in: Proceedings of The Sixth Caribbean Conference in Graph Theory and Computing, The University of the West Indies, St. Augustine, Trinidad, West Indies, 1991, The University of West Indies, St. Augustine, Trinidad, 1991, p. 240–259

  18. Klein D.J.: Rigorous results for branched polymer models with excluded volume. J. Chem. Phys. 75, 5186–5189 (1981)

    Article  CAS  Google Scholar 

  19. Hässelbarth W., Ruch E.: Permutational isomers with chiral ligands. Israel J. Chem. 15, 112–115 (1976)

    Google Scholar 

  20. Ruch E., Klein D.J.: Double cosets in chemistry and physics. Theor. Chim. Acta 63, 447–472 (1983)

    CAS  Google Scholar 

  21. Klein D., Misra A.D.: Topological isomer generation & enumeration: Application for polyphenacenes. MATCH Commun. Math. Comput. Chem. 46, 45–69 (2002)

    CAS  Google Scholar 

  22. M. Gionfriddo, Alcuni resultati relativi alle colorazioni L s d’un grafo. Riv. Mat. Univ. Parma. 6, 125–133 (1980) (Italian)

  23. M. Gionfriddo, Su un problema relativo alle colorazioni L 2 d’un grafo planare e colorazioni L s . Riv. Mat. Univ. Parma. 6, 151–160 (1980) (Italian)

  24. Vukičević D., Graovac A.: On functionalized fullerenes C60X n . J. Math. Chem. 45(2), 557–562 (2009)

    Article  Google Scholar 

  25. Farrell E.J.: On a general class of graph polynomials. J. Combin. Theory B 26(1), 111–122 (1979)

    Article  Google Scholar 

  26. Klein D.J.: Variational localized-site cluster expansions. I. General theory. J. Chem. Phys. 64(12), 4868–4872 (1976)

    Article  CAS  Google Scholar 

  27. Farrell E.J.: On a class of polynomials obtained from circuits in a graph and its application to characteristic polynomials of graphs. Discrete Math. 25, 121–133 (1979)

    Article  Google Scholar 

  28. Farrell E.J., Grell J.C.: The circuit polynomial and its relation to other polynomials. Caribean J. Math. 2(1/2), 15–24 (1982)

    Google Scholar 

  29. Farrell E.J.: An introduction to matching polynomials. J. Combin. Theory Ser. B 27, 75–86 (1979)

    Article  Google Scholar 

  30. Gutman I.: On the theory of the matching polynomial. MATCH Commun. Math. Comput. Chem. 6, 75–91 (1979)

    CAS  Google Scholar 

  31. V.R. Rosenfeld, The circuit polynomial of the restricted rooted product G(Γ) of graphs with a bipartite core G. Discrete Appl. Math. 156, 500–510 (2008). (It supersedes an earlier version with this Title; see arXiv:math.CO/0304190, v. 1, 15 Apr 2003, 21 p.)

  32. Farrell E.J., Rosenfeld V.R.: Block and articulation node polynomials of the generalized rooted product of graphs. J. Math. Sci. (India) 11(1), 35–47 (2000)

    Google Scholar 

  33. Rosenfeld V.R., Diudea M.V.: The block polynomials and block spectra of dendrimers. Internet Electron. J. Mol. Design 1(3), 142–156 (2002)

    CAS  Google Scholar 

  34. Klein D.J., Schmalz T.G., Hite G.E., Metropolous A., Seitz W.A.: The poly-polyphenanthrene family of multi-phase pi-network polymers in a valence-bond picture. Chem. Phys. Lett. 120, 367–371 (1985)

    Article  CAS  Google Scholar 

  35. Klein D.J., Hite G.E., Schmalz T.G.: Transfer-matrix method for subgraph enumeration: Application to polypyrene fusenes. J. Comput. Chem. 7, 443–456 (1986)

    Article  CAS  Google Scholar 

  36. Heilmann O.J., Lieb E.H.: Theory of monomer-dimer systems. Commun. Phys. 25(3), 190–232 (1972)

    Article  Google Scholar 

  37. V.R. Rosenfeld, The enumeration of admissible subgraphs of the n-dimensional Ising problem (n ≥ 1), in: Calculational Methods in Physical Chemistry, ed. by Yu. G. Papulov (KGU (Kalinin’s State University), Kalinin, 1988), p. 15–20 (Russian)

  38. Rosenfeld V.R., Gutman I.: A novel approach to graph polynomials. MATCH Commun. Math. Comput. Chem. 24, 191–199 (1989)

    Google Scholar 

  39. Rosenfeld V.R., Gutman I.: On the graph polynomials of a weighted graph. Coll. Sci. Papers Fac. Sci. Kragujevac 12, 49–57 (1991)

    Google Scholar 

  40. Gutman I., Harary F.: Generalizations of the matching polynomial. Utilitas Mathematica 24, 97–106 (1983)

    Google Scholar 

  41. Hoede C., Li X.: Clique polynomials and independent set polynomials of graphs. Discrete Math. 125, 219–228 (1991)

    Article  Google Scholar 

  42. L.W. Beineke, Derived graphs of digraphs, in: Beiträge zur Graphentheorie, ed. by H. Sachs, H.-J. Voss, H.-J. Walter (Teubner, Leipzig, 1968), p. 17–33

  43. L.W. Beineke, L.W., Characterizations of derived graphs. J. Combin. Theory 9, 129–135 (1970); MR0262097

  44. Gutman I.: Some relations for the independence and matching polynomials and their chemical applications. Bull. Acad. Serbe Sci. Arts 105, 39–49 (1992)

    Google Scholar 

  45. Scott A.D., Sokal A.D.: The repulsive lattice gas, the independence-set polynomial, and the Lovász local lemma. J. Stat. Phys. 118, 1151–1261 (2005)

    Article  Google Scholar 

  46. Scott A.D., Sokal A.D.: On dependency graphs and the lattice gas. Combin. Probab. Comput. 15, 253–279 (2006)

    Article  Google Scholar 

  47. G.D. Birkhoff, A determinant formula for the number of ways of coloring a map. Ann. Math. 14, 42–46 (1912). See also W.T. Tutte. Graph Theory, Addison-Wesley, 1984

    Google Scholar 

  48. Thomassen C.: Chromatic roots and Hamiltonian paths. J. Combin. Theory B 80, 218–224 (2000)

    Article  Google Scholar 

  49. Harary F.: Graphical exposition of the Ising problem. J. Austral. Math. Soc. 12, 365–377 (1971)

    Article  Google Scholar 

  50. Kasteleyn P.W.: Graph theory and crystal physics. In: Harary , F. (eds) Graph Theory and Theoretical Physics, pp. 43–110. Academic Press, London (1967)

    Google Scholar 

  51. Montroll E.W.: Lattice statistics. In: Beckenbach, E.E. (eds) Applied Combinatorial Mathematics, pp. 96–143. Wiley, New York (1964)

    Google Scholar 

  52. Feynman R.: Statistical Mechanics, A Set of Lectures. W.A. Benjamin Inc., Reading, MA (1972)

    Google Scholar 

  53. Litvin D.B.: The icosahedral point groups. Acta Cryst. A 47, 70–73 (1991)

    Article  Google Scholar 

  54. Boyle L.L., O zgo Z.: Icosahedral irreducible tensors and their applications. Int. J. Quantum Chem. 7, 383–404 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir R. Rosenfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenfeld, V.R., Klein, D.J. Enumeration of substitutional isomers with restrictive mutual positions of ligands: I. Overall counts. J Math Chem 51, 21–37 (2013). https://doi.org/10.1007/s10910-012-0056-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0056-0

Keywords

Navigation