Skip to main content
Log in

Repeat space theory applied to carbon nanotubes and related molecular networks. III

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The present article is part III of a series devoted to extending the Repeat Space Theory (RST) to apply to carbon nanotubes and related molecular networks. In this part III, four problems concerning the above-mentioned extension of the RST have been formulated. Affirmative solutions of these problems imply (i) asymptotic analysis of carbon nanotubes (CNTs) via the new techniques of normed repeat space, Banach algebra, and C*-algebra becomes possible; (ii) a new linkage is formed between the investigations of CNTs and those of ‘spectral symmetry’. In the present paper, we give affirmative solutions to all of the four problems, together with (a) estimates of the norms of matrix sequences representing CNTs, (b) Challenging Problem A#, which complements Problems A, (c) several pictures of ‘CNT Matrix Art’ which has heuristic power to lead one to get the affirmative answers to the problems formulated in an abstract algebraic manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Arimoto, K. Fukui, Fundamental Mathematical Chemistry, Interdisciplinary Research in Fundamental Mathematical Chemistry and Generalized Repeat Space, IFC Bulletin, Kyoto, 1998, pp. 7–13

  2. Arimoto S.: Note on the repeat space theory—its development and communications with Prof. Kenichi Fukui. J. Math. Chem. 34, 253–257 (2003)

    Article  CAS  Google Scholar 

  3. Arimoto S.: Normed repeat space and its super spaces: fundamental notions for the second generation Fukui project. J. Math. Chem. 46, 589 (2009)

    Article  Google Scholar 

  4. S. Arimoto, Fundamental notions for the second generation Fukui project and a prototypal problem of the normed repeat space and its super spaces. J. Math. Chem. 49, 880 (2011). (First published Springer online: 19 December 2010)

    Google Scholar 

  5. Arimoto S.: Tsuyama-castle function and Matrix Art. Bull. Tsuyama Natl. Coll. Technol. 53E, 1 (2011)

    Google Scholar 

  6. S. Arimoto, Multidimensional Magic Mountains and Matrix Art for the Generalized Repeat Space Theory. J. Math. Chem. (2012). Springer Online: doi:10.1007/s10910-011-9963-8

  7. Arimoto S., Spivakovsky M., Taylor K.F., Mezey P.G.: Proof of the Fukui conjecture via resolution of singularities and related methods I. J. Math. Chem. 37, 75–91 (2005)

    Article  CAS  Google Scholar 

  8. Arimoto S., Spivakovsky M., Taylor K.F., Mezey P.G.: Proof of the Fukui conjecture via resolution of singularities and related methods II. J. Math. Chem. 37, 171–189 (2005)

    Article  CAS  Google Scholar 

  9. Arimoto S.: Proof of the Fukui conjecture via resolution of singularities and related methods III. J. Math. Chem. 47, 856 (2010)

    Article  CAS  Google Scholar 

  10. Arimoto S., Spivakovsky M., Taylor K.F., Mezey P.G.: Proof of the Fukui conjecture via resolution of singularities and related methods IV. J. Math. Chem. 48, 776 (2010)

    Article  CAS  Google Scholar 

  11. Arimoto S., Spivakovsky M., Yoshida E., Taylor K.F., Mezey P.G.: Proof of the Fukui conjecture via resolution of singularities and related methods V. J. Math. Chem. 49, 1700 (2011)

    Article  CAS  Google Scholar 

  12. Arimoto S., Fukui K., Taylor K.F., Mezey P.G.: Structural analysis of certain linear operators representing chemical network systems via the existence and uniqueness theorems of spectral resolution IV. Int. J. Quantum Chem. 67, 57–69 (1998)

    Article  CAS  Google Scholar 

  13. Arimoto S., Spivakovsky M.: The asymptotic linearity theorem for the study of additivity problems of the zero-point vibrational energy of hydrocarbons and the total pi-electron energy of alternant hydrocarbons. J. Math. Chem. 13, 217–247 (1993)

    Article  CAS  Google Scholar 

  14. Arimoto S., Taylor K.F.: Aspects of form and general topology: alpha space asymptotic linearity theorem and the spectral symmetry of alternants. J. Math. Chem. 13, 249–264 (1993)

    Article  CAS  Google Scholar 

  15. Arimoto S., Taylor K.F.: Practical version of the asymptotic linearity theorem with applications to the additivity problems of thermodynamic quantities. J. Math. Chem. 13, 265–275 (1993)

    Article  CAS  Google Scholar 

  16. Arimoto S.: New proof of the Fukui conjecture by the functional asymptotic linearity theorem. J. Math. Chem. 34, 259 (2003)

    Article  CAS  Google Scholar 

  17. Arimoto S.: Repeat space theory applied to carbon nanotubes and related molecular networks I. J. Math. Chem. 41, 231 (2007)

    Article  CAS  Google Scholar 

  18. Arimoto S.: Repeat space theory applied to carbon nanotubes and related molecular networks II. J. Math. Chem. 43, 658 (2008)

    Article  CAS  Google Scholar 

  19. Arimoto S., Fukui K., Zizler P., Taylor K.F., Mezey P.G.: Structural analysis of certain linear operators representing chemical network systems via the existence and uniqueness theorems of spectral resolution V. Int. J. Quantum Chem. 74, 633 (1999)

    Article  CAS  Google Scholar 

  20. Arimoto S., Spivakovsky M., Ohno H., Zizler P., Taylor K.F., Yamabe T., Mezey P.G.: Structural analysis of certain linear operators representing chemical network systems via the existence and uniqueness theorems of spectral resolution VI. Int. J. Quantum Chem. 84, 389 (2001)

    Article  CAS  Google Scholar 

  21. Arimoto S., Spivakovsky M., Ohno H., Zizler P., Zuidwijk R.A., Taylor K.F., Yamabe T., Mezey P.G.: Structural analysis of certain linear operators representing chemical network systems via the existence and uniqueness theorems of spectral resolution VII. Int. J. Quantum Chem. 97, 765 (2004)

    Article  CAS  Google Scholar 

  22. Arimoto S.: The functional delta existence theorem and the reduction of a proof of the Fukui conjecture to that of the special functional asymptotic linearity theorem. J. Math. Chem. 34, 287–296 (2003)

    Article  CAS  Google Scholar 

  23. Arimoto S.: Open problem, Magic Mountain and Devil’s Staircase swapping problems. J. Math. Chem. 27, 213–217 (2000)

    Article  CAS  Google Scholar 

  24. Arimoto S., Fukui K., Taylor K.F., Mezey P.G.: Structural analysis of certain linear operators representing chemical network systems via the existence and uniqueness theorems of spectral resolution I. Int. J. Quantum Chem. 53, 375–386 (1995)

    Article  CAS  Google Scholar 

  25. Iijima S.: Nature 354, 56 (1991)

    Article  CAS  Google Scholar 

  26. Yamabe T.: Synth. Metals 70, 1511 (1995)

    Article  CAS  Google Scholar 

  27. Tanaka K., Yamabe T., Fukui K.: The Science and Technology of Carbon Nanotubes. Elsevier, Amsterdam (1999)

    Google Scholar 

  28. Saito R., Dresselhaus G., Dresselhaus M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)

    Book  Google Scholar 

  29. Hata M., Yamaguti M.: Japan J. Appl. Math. 1, 183 (1984)

    Article  Google Scholar 

  30. Yamaguti M., Hata M.: In: Glowinski, R., Lions, J.-L. (eds) Computing Methods in Applied Science and Engineering VI, pp. 139–147. Elsevier, North-Holland (1984)

    Google Scholar 

  31. H. Hironaka, Mathematics and the Sciences, Proceedings of the 4th IFC Symposium (IFC Kyoto, 1988), pp. 88–93

  32. R. Hoffmann, One Culture, Proceedings of the 4th IFC Symposium (IFC Kyoto, 1988), pp. 58–87

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Arimoto.

Additional information

The present series of articles is closely associated with the series of articles entitled ‘Proof of the Fukui conjecture via resolution of singularities and related methods’ published in the JOMC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arimoto, S., Spivakovsky, M., Amini, M. et al. Repeat space theory applied to carbon nanotubes and related molecular networks. III. J Math Chem 50, 2606–2622 (2012). https://doi.org/10.1007/s10910-012-0050-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0050-6

Keywords

Mathematics Subject Classification

Navigation