Skip to main content
Log in

The principal measure and distributional (p, q)-chaos of a coupled lattice system related with Belusov–Zhabotinskii reaction

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

García Guirao and Lampart (J Math Chem 48:66–71, 2010; J Math Chem 2 48:159–164, 2010) said that for non-zero couplings constant, the lattice dynamical system is more complicated. Motivated by this, in this paper, we prove that this coupled lattice system is distributionally (p, q)-chaotic for any pair 0 ≤ p ≤ q ≤ 1 and its principal measure is not less than \({\frac{2}{3} + \sum_{n=2}^{\infty} \frac{1}{n} \frac{2^{n-1}}{(2^{n}+1)(2^{n-1}+1)}}\) for coupling constant \({0 < \epsilon < 1}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler R.L., Konheim A.G., McAndrew M.H.: Topological entropy. Trans. Am. Math. Soc. 114, 309–319 (1965)

    Article  Google Scholar 

  2. Block L.S., Coppel W.A.: Dynamics in One Dimension, Springer Monographs in Mathematics. Springer, Berlin (1992)

    Google Scholar 

  3. Bowen R.: Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 153, 401–414 (1971)

    Article  Google Scholar 

  4. Blanchard F., Glasner E., Kolyada S., Maass A.: On Li–Yorke pair. J. Reine Angew. Math. 547, 51–68 (2002)

    Article  Google Scholar 

  5. Dana R.A., Montrucchio L.: Dynamical complexity in duopoly games. J. Econ. Theory 40, 40–56 (1986)

    Article  Google Scholar 

  6. Devaney R.L.: An Introduction to Chaotics Dynamical Systems. Benjamin/Cummings, Menlo Park, CA (1986)

    Google Scholar 

  7. Dinaburg E.I.: A connection between various entropy characterizations of dynamical systems. Izv. Akad. Nauk SSSR Ser. Mat. 35, 324–366 (1971)

    Google Scholar 

  8. García Guirao J.L., Lampart M.: Positive entropy of a coupled lattice system related with Belusov–Zhabotinskii reaction. J. Math. Chem. 48, 66–71 (2010)

    Article  Google Scholar 

  9. García Guirao J.L., Lampart M.: Chaos of a coupled lattice system related with Belusov–Zhabotinskii reaction. J. Math. Chem. 48, 159–164 (2010)

    Article  Google Scholar 

  10. Kaneko K.: Globally coupled chaos violates law of large numbers. Phys. Rev. Lett. 65, 1391–1394 (1990)

    Article  Google Scholar 

  11. Kaneko K., Willeboordse H.F.: Bifurcations and spatial chaos in an open flow model. Phys. Rev. Lett. 73, 533–536 (1994)

    Article  Google Scholar 

  12. Kohmoto M., Oono Y.: Discrete model of chemical turbulence. Phys. Rev. Lett. 55, 2927–2931 (1985)

    Article  Google Scholar 

  13. Li T.Y., Yorke J.A.: Period three implies chaos. Am. Math. Mon. 82(10), 985–992 (1975)

    Article  Google Scholar 

  14. M. Kuchta, J. Smítal, Two-poit scrambled set implies chaos, in European Conference on Iteration Theory (Caldes de Malavella, 1987) (Teaneck, NJ: World Scientific), pp. 427–430 (1989)

  15. Oprocha P., Wilczyński P.: Shift spaces and distributional chaos. Chaos Solitons Fractals 31, 347–355 (2007)

    Article  Google Scholar 

  16. Pikula R.: On some notions of chaos in dimension zero. Colloq. Math. 107, 167–177 (2007)

    Article  Google Scholar 

  17. Puu T.: Chaos in duopoly pricing. Chaos Solitions Fractals 1, 573–581 (1991)

    Article  Google Scholar 

  18. Schweizer B., Smítal J.: Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans. Am. Math. Soc. 344, 737–754 (1994)

    Article  Google Scholar 

  19. Schweizer B., Sklar A., Smítal J.: Distributional (and other) chaos and its measurement. Real Anal. Exch. 21, 495–524 (2001)

    Google Scholar 

  20. Smítal J., Stefánková M.: Distributional chaos for triangular maps. Chaos Solitons Fractals 21, 1125–1128 (2004)

    Article  Google Scholar 

  21. VanderPool B.: Forced oscilations in a circuit with nonlinear resistence. Lond. Edinb. Dublin Phil. Mag. 3, 109–123 (1927)

    Google Scholar 

  22. Wu X.X., Zhu P.Y.: The principal measure of a quantum harmonic oscillator. J. Phys. A: Math. Theor. 44, 505101 (2011)

    Article  Google Scholar 

  23. X.X. Wu, P.Y. Zhu, Li–Yorke chaos in a coupled lattice system related with Belusov–Zhabotinskii reaction. J. Math. Chem. (2011). doi:10.1007/s10910-011-9971-8

  24. Wu X.X., Zhu P.Y.: A minimal DC1 system. Topol. Appl. 159, 150–152 (2012)

    Article  Google Scholar 

  25. Yuan D.L., Xiong J.C.: Densities of trajectory approximation time sets (in Chinese). Sci. Sin. Math. 40(11), 1097–1114 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinxing Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Zhu, P. The principal measure and distributional (p, q)-chaos of a coupled lattice system related with Belusov–Zhabotinskii reaction. J Math Chem 50, 2439–2445 (2012). https://doi.org/10.1007/s10910-012-0041-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0041-7

Keywords

Navigation