Skip to main content
Log in

Modelling a P-FAIMS with multiphysics FEM

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A micro Planar high-Field Asymmetric waveform Ion Mobility Spectrometer (P-FAIMS) operating at ambient pressure and temperature has been simulated using COMSOL Multiphysics software. P-FAIMS is based on ion gas-phase separation due to the dependence of ion mobility with electric field. Ions are selected by a DC voltage characteristic of each ion kind. Physics of ion behaviour in high electric fields conditions is well known but not the chemistry behind ion reactions and kinetics. The aim of this work is the modelling of different kind of ions in a P-FAIMS having account of the main factors involved in their movement in the drift tube. Simulations of vapour phase ions of three compounds have been studied for different values of drift electric field amplitude to gas number density (E/N) ratio: protonated water clusters H+(H2O) n and \({{\rm O}_{2}^{-}({\rm H}_{2}{\rm O})_{n}}\) ions obtained in air, and a chemical warfare agent simulant DMMPH+ that emulates gas sarin. Ions were selected due to simulation needs of experimental data of the main quantities involved in the definition of ions mobilities. Results show that simulations of ions behaviour in a P-FAIMS are possible with COMSOL Multiphysics software and that the time and intensity at which ions are detected are in good agreement with experimental data from literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eiceman G.A., Karpas Z.: Ion Mobility Spectrometry. CRC Press, Boca Raton (1993)

    Google Scholar 

  2. Miller R.A., Eiceman G.A., Nazarov E.G., King A.T.: Sens. Actuator B-Chem. 67, 300–306 (2000)

    Article  Google Scholar 

  3. Guevremont R., Purves R.W.: Rev. Sci. Instrum. 70, 1370–1383 (1999)

    Article  CAS  Google Scholar 

  4. Salleras M., Kalms A., Krenkow A., Kessler M., Goebel J., Muller G., Marco S.: Sens. Actuator B-Chem. 118, 338–342 (2006)

    Article  Google Scholar 

  5. Mason E.A., McDaniel E.W.: Transport Properties of Ions in Gases. Wiley, New York (1988)

    Book  Google Scholar 

  6. Thomson J.J., Thomson G.P.: Conduction of Electricity Through Gases. University Press, Cambridge (1928)

    Google Scholar 

  7. Huxley L.G.H., Crompton R.W., Elford M.T.: Br. J. Appl. Phys. 17, 1237–1238 (1966)

    Article  CAS  Google Scholar 

  8. The Editor, Br. J. Appl. Phys. 18, 691 (1967)

    Google Scholar 

  9. Eiceman G.A., Tadjikov B., Krylov E., Nazarov E.G., Miller R.A., Westbrook J., Funk P.: J. Chromatogr. A 917, 205–217 (2001)

    Article  CAS  Google Scholar 

  10. Shvartsburg A.A.: Differential Ion Mobility Spectrometry: Nonlinear Ion Transport and Fundamentals of FAIMS. CRC Press, Boca Raton, FL (2009)

    Google Scholar 

  11. Krylov E.V.: Int. J. Mass Spectrom. 225, 39–51 (2003)

    Article  CAS  Google Scholar 

  12. Krylov E.V., Nazarov E.G., Miller R.A.: Int. J. Mass Spectrom. 266, 76–85 (2007)

    Article  CAS  Google Scholar 

  13. Buryakov I.A.: Talanta 61, 369–375 (2003)

    Article  CAS  Google Scholar 

  14. Krylov E.V.: Technol. Phys. 44, 113–116 (1999)

    Article  CAS  Google Scholar 

  15. Krylov E.V.: Instrum. Exp. Tech. 40, 628–631 (1997)

    Google Scholar 

  16. Papanastasiou D., Wollnik H., Rico G., Tadjimukhamedov F., Mueller W., Eiceman G.A.: J. Phys. Chem. A 112, 3638–3645 (2008)

    Article  CAS  Google Scholar 

  17. Krylova N., Krylov E., Eiceman G.A., Stone J.A.: J. Phys. Chem. A 107, 3648–3654 (2003)

    Article  CAS  Google Scholar 

  18. Dahl D.A., McJunkin T.R., Scott J.R.: Int. J. Mass Spectrom. 266, 156–165 (2007)

    Article  CAS  Google Scholar 

  19. Barth S., Baether W., Zimmermann S.: Sens. J. IEEE 9, 377–382 (2009)

    Article  CAS  Google Scholar 

  20. NIST. Chemistry WebBook. Available from: http://webbook.nist.gov/chemistry

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Cumeras.

Additional information

This is one of several papers published in Journal of Mathematical Chemistry, “Special Issue: CMMSE 2010”, with invited editorial contribution by Prof. Jesus Vigo-Aguiar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cumeras, R., Gràcia, I., Figueras, E. et al. Modelling a P-FAIMS with multiphysics FEM. J Math Chem 50, 359–373 (2012). https://doi.org/10.1007/s10910-010-9772-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-010-9772-5

Keywords

Navigation