Skip to main content
Log in

Efimov-Like Behaviour in Low-Dimensional Polymer Models

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In the quantum Efimov effect, identical bosons form infinitely many bound trimer states at the bound dimer dissociation threshold, with their energy spectrum obeying a universal geometrical scaling law. Inspired by the formal correspondence between the possible trajectories of a quantum particle and the possible conformations of a polymer chain, the existence of a triple-stranded DNA bound state when a double-stranded DNA is not stable was recently predicted by modelling three directed polymer chains in low-dimensional lattices, both fractal (\(d<1\)) and euclidean (\(d=1\)). A finite melting temperature for double-stranded DNA requires in \(d\le 2\) the introduction of a weighting factor penalizing the formation of denaturation bubbles, that is non-base paired portions of DNA. The details of how bubble weighting is defined for a three-chain system were shown to crucially affect the presence of Efimov-like behaviour on a fractal lattice. Here we assess the same dependence on the euclidean \(1+1\) lattice, by setting up the transfer matrix method for three infinitely long chains confined in a finite size geometry. This allows us to discriminate unambiguously between the absence of Efimov-like behaviour and its presence in a very narrow temperature range, in close correspondence with what was already found on the fractal lattice. When present, however, no evidence is found for triple-stranded bound states other than the ground state at the two-chain melting temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The mapping of bubble weighting onto the quantum formalism might be possible by introducing a tunnelling coefficient through a \(\delta \)-potential barrier at the boundary of a short-range square well. Hermiticity would, however, require both the opening and the closing of bubbles to be given the same weight.

  2. The value of the reunion exponent c is related to the order of the melting transition of double-stranded DNA and was computed for a fully self-avoiding (i.e. non-directed) \(d=3\) polymer model [19]. The values of the reunion exponent for several directed polymers are known exactly in \(d=1\) [21] and through renormalization group estimates in generic dimension [22].

  3. At the melting transition, the two-chain problem is equivalently described by a fully unbiased (\(y=1\), \(\sigma =1\)) random walk, thus yielding a uniform probability distribution at equilibrium in a finite size system with periodic boundary conditions

References

  1. V. Efimov, Phys. Lett. B 33, 563 (1970)

    Article  ADS  Google Scholar 

  2. E. Braaten, H.-W. Hammer, Ann. Phys. 322, 120 (2007)

    Article  ADS  Google Scholar 

  3. D.V. Fedorov, A.S. Jensen, K. Riisager, Phys. Rev. Lett. 73, 2817 (1994)

    Article  ADS  Google Scholar 

  4. T. Kraemer, M. Mark, P. Waldburger, J.G. Danzl, C. Chin, B. Enseger, A.-D. Lange, K. Pilch, A. Jaakkola, H.-C. Nägerl, R. Grimm, Nature 440, 315 (2006)

    Article  ADS  Google Scholar 

  5. J. Maji, S.M. Bhattacharjee, F. Seno, A. Trovato, New J. Phys. 12, 083057 (2010)

    Article  ADS  Google Scholar 

  6. J. Maji, S.M. Bhattacharjee, Phys. Rev. E 86, 041147 (2012)

    Article  ADS  Google Scholar 

  7. T. Pal, P. Sadhukhan, S.M. Bhattacharjee, Phys. Rev. Lett. 110, 028105 (2013)

    Article  ADS  Google Scholar 

  8. J. Maji, S.M. Bhattacharjee, F. Seno, A. Trovato, Phys. Rev. E 89, 012121 (2014)

    Article  ADS  Google Scholar 

  9. T. Pal, P. Sadhukhan, S.M. Bhattacharjee, Phys. Rev. E 91, 042105 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Poland, H.A. Scheraga, J. Chem. Phys. 85, 1456 (1966)

    Article  ADS  Google Scholar 

  11. M.D. Frank-Kamenetskii, S.M. Mirkin, Annu. Rev. Biochem. 64, 65 (1995)

    Article  Google Scholar 

  12. I. Radhakrishnan, D.J. Patel, Biochemistry 33, 11405 (1994)

    Article  Google Scholar 

  13. E.N. Nikolova, F.L. Gottardo, H.M. Al-Hashimi, J. Am. Chem. Soc. 134, 3667 (2012)

    Article  Google Scholar 

  14. D.P. Arya, R.L. Coffee, L. Xue, Bioorg. Med. Chem. Lett. 14, 4643 (2004)

    Article  Google Scholar 

  15. A. Jain, G. Wang, K.M. Vasquez, Biochimie 90, 1117 (2008)

    Article  Google Scholar 

  16. D. Marenduzzo, A. Trovato, A. Maritan, Phys. Rev. E 64, 031901 (2001)

    Article  ADS  Google Scholar 

  17. R.D. Blake, J.W. Bizzarro, J.D. Blake, G.R. Day, S.G. Delcourt, J. Knowles, K.A. Marx, J. SantaLucia Jr., Bioinformatics 15, 370 (1999)

    Article  Google Scholar 

  18. E. Braaten, H.-W. Hammer, Phys. Rep. 428, 259 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. Y. Kafri, D. Mukamel, L. Peliti, Eur. Phys. J. B 27, 135 (2002)

    ADS  Google Scholar 

  20. A. Hanke, M.G. Ochoa, R. Metzler, Phys. Rev. Lett. 100, 018106 (2008)

    Article  ADS  Google Scholar 

  21. M.E. Fischer, J. Stat. Phys. 34, 667 (1984)

    Article  ADS  Google Scholar 

  22. S. Mukherji, S.M. Bhattacharjee, Phys. Rev. E 48, 3427 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  23. B. Derrida, J. Phys. A 14, L5 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Trovato, F. Seno, Phys. Rev. E 56, 131 (1997)

    Article  ADS  Google Scholar 

  25. C. Vanderzande, Lattice Models of Polymers (Cambridge University Press, Cambridge, 1998)

    Book  MATH  Google Scholar 

  26. S.M. Bhattacharjee, J. Phys. A 33, L423 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  27. D. Marenduzzo, S.M. Bhattacharjee, A. Maritan, E. Orlandini, F. Seno, Phys. Rev. Lett. 88, 028102 (2001)

    Article  ADS  Google Scholar 

  28. R. Kapri, S.M. Bhattacharjee, F. Seno, Phys. Rev. Lett. 93, 248102 (2004)

    Article  ADS  Google Scholar 

  29. D. Marenduzzo, A. Maritan, E. Orlandini, F. Seno, A. Trovato, J. Stat. Mech. 2009, L04001 (2009)

  30. D. Marenduzzo, E. Orlandini, F. Seno, A. Trovato, Phys. Rev. E 81, 051926 (2010)

    Article  ADS  Google Scholar 

  31. R.A. Horn, C.A. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 2013)

    MATH  Google Scholar 

  32. S.M. Bhattacharjee, F. Seno, J. Phys. A 34, 6375 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  33. S. Moroz, J.P. D’Incao, D.S. Petrov, Phys. Rev. Lett. 115, 180406 (2015)

    Article  ADS  Google Scholar 

  34. J. Levinsen, P. Massignan, M.M. Parish, Phys. Rev. X 4, 031020 (2014)

    Google Scholar 

  35. S.M. Bhattacharjee, S. Mukherji, Phys. Rev. Lett. 70, 49 (1993)

    Article  ADS  Google Scholar 

  36. A.G. Cherstvy, A.A. Kornyschev, S. Leikin, J. Phys. Chem. B 106, 13362 (2002)

    Article  Google Scholar 

  37. X. Qiu, V.A. Parsegian, D.C. Rau, Proc. Natl. Acad. Sci. USA 107, 21482 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

A.T. acknowledges funding from Ministero dell’Istruzione, dell’Università e della Ricerca through grant PRIN (Progetti di RIlevanza Nazionale) 2010HXAW77_011 and from Università degli Studi di Padova through grant PRAT (PRogetti di ATeneo) CPDA121890/12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Trovato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mura, F., Bhattacharjee, S.M., Maji, J. et al. Efimov-Like Behaviour in Low-Dimensional Polymer Models. J Low Temp Phys 185, 102–121 (2016). https://doi.org/10.1007/s10909-016-1627-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1627-4

Keywords

Navigation