Skip to main content
Log in

Van Der Waals-Corrected Density Functional Theory Simulation of Adsorption Processes on Noble-Metal Surfaces: Xe on Ag(111), Au(111), and Cu(111)

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The DFT/vdW-WF2s1 method based on the generation of localized Wannier functions, recently developed to include the van der Waals interactions in the density functional theory and describe adsorption processes on metal surfaces by taking metal-screening effects into account, is applied to the case of the interaction of Xe with noble-metal surfaces, namely Ag(111), Au(111), and Cu(111). The study is also repeated by adopting the DFT/vdW-QHO-WF variant relying on the quantum harmonic oscillator model which describes well many body effects. Comparison of the computed equilibrium binding energies and distances, and the \(C_3\) coefficients characterizing the adatom–surface van der Waals interactions, with available experimental and theoretical reference data shows that the methods perform well and elucidates the importance of properly including screening effects. The results are also compared with those obtained by other vdW-corrected DFT schemes, including PBE-D, vdW-DF, vdW-DF2, rVV10, and by the simpler local density approximation and semi-local (PBE) generalized gradient approximation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. L.W. Bruch, M.W. Cole, E. Zaremba, Physical Adsorption: Forces and Phenomena (Clarendon Press, Oxford, 1997)

    Google Scholar 

  2. G. Vidali, G. Ihm, H.Y. Kim, M.W. Cole, Surf. Sci. Rep. 12, 133 (1991)

    Article  ADS  Google Scholar 

  3. J.M. Gottlieb, Phys. Rev. B 42, 5377 (1990)

    Article  ADS  Google Scholar 

  4. M. Th Seyller, R.D. Caragiu, P. Diehl, M.Lindroos Kaukasoina, Chem. Phys. Lett. 291, 567 (1998)

    Article  ADS  Google Scholar 

  5. M. Caragiu, T. Seyller, R.D. Diehl, Phys. Rev. B 66, 195411 (2002)

  6. B. Narloch, D. Menzel, Chem. Phys. Lett. 290, 163 (1997)

    Article  ADS  Google Scholar 

  7. R.D. Diehl, M. Th Seyller, G.S. Caragiu, N. Leatherman, K. Ferralis, P. Pussi, M.Lindroos Kaukasoina, J. Phys. 16, S2839 (2004)

    Google Scholar 

  8. J.L.F. Da Silva, C. Stampfl, M. Scheffler, Phys. Rev. Lett. 90, 066104 (2003)

    Article  ADS  Google Scholar 

  9. J.L.F. Da Silva, C. Stampfl, M. Scheffler, Phys. Rev. B 72, 075424 (2005)

    Article  ADS  Google Scholar 

  10. J.L.F. Da Silva, C. Stampfl, Phys. Rev. B 77, 045401 (2008)

    Article  ADS  Google Scholar 

  11. A.E. Betancourt, D.M. Bird, J. Phys. 12, 7077 (2000)

    Google Scholar 

  12. P. Lazić, Ž. Crljen, R. Brako, B. Gumhalter, Phys. Rev. B 72, 245407 (2005)

    Article  ADS  Google Scholar 

  13. M.C. Righi, M. Ferrario, J. Phys. 19, 305008 (2007)

    Google Scholar 

  14. X. Sun, Y. Yamauchi, J. Appl. Phys. 110, 103701 (2011)

    Article  ADS  Google Scholar 

  15. D.-L. Chen, W.A. Al-Saidi, J.K. Johnson, Phys. Rev. B 84, 241405(R) (2011)

    Article  ADS  Google Scholar 

  16. D.-L. Chen, W.A. Al-Saidi, J.K. Johnson, J. Phys. 24, 424211 (2012)

    Google Scholar 

  17. P.S. Bagus, V. Staemmler, C. Wöll, Phys. Rev. Lett. 89, 096104 (2002)

    Article  ADS  Google Scholar 

  18. W. Kohn, Y. Meir, D.E. Makarov, Phys. Rev. Lett. 80, 4153 (1998)

  19. R. Eisenhitz, F. London, Z. Phys. 60, 491 (1930)

    Article  ADS  Google Scholar 

  20. K.E. Riley, M. Pitoňák, P. Jurečka, P. Hobza, Chem. Rev. 110, 5023 (2010)

    Article  Google Scholar 

  21. A. Tkatchenko, L. Romaner, O.T. Hofmann, E. Zojer, C. Ambrosch-Draxl, M. Scheffler, MRS Bulletin 35, 435 (2010)

    Article  Google Scholar 

  22. J. Klimeš, A. Michaelides, J. Chem. Phys. 137, 120901 (2012)

    Article  ADS  Google Scholar 

  23. N. Marzari, D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)

    Article  ADS  Google Scholar 

  24. P.L. Silvestrelli, Phys. Rev. Lett 100, 053002 (2008)

    Article  ADS  Google Scholar 

  25. P.L. Silvestrelli, J. Phys. Chem. A 113, 5224 (2009)

    Article  Google Scholar 

  26. P.L. Silvestrelli, K. Benyahia, S. Grubisiĉ, F. Ancilotto, F. Toigo, J. Chem. Phys. 130, 074702 (2009)

    Article  ADS  Google Scholar 

  27. P.L. Silvestrelli, Chem. Phys. Lett. 475, 285 (2009)

    Article  ADS  Google Scholar 

  28. P.L. Silvestrelli, F. Toigo, F. Ancilotto, J. Phys. Chem. C 113, 17124 (2009)

    Article  Google Scholar 

  29. A. Ambrosetti, P.L. Silvestrelli, J. Phys. Chem. C 115, 3695 (2011)

    Article  Google Scholar 

  30. F. Costanzo, P.L. Silvestrelli, F. Ancilotto, J. Chem. Theory Comp. 8, 1288 (2012)

    Article  Google Scholar 

  31. F. Costanzo, P.L. Silvestrelli, F. Ancilotto, Arch. Metall. Mater. 57, 1075 (2012)

  32. P.L. Silvestrelli, A. Ambrosetti, S. Grubisiĉ, F. Ancilotto, Phys. Rev. B 85, 165405 (2012)

    Article  ADS  Google Scholar 

  33. A. Ambrosetti, F. Ancilotto, P.L. Silvestrelli, J. Phys. Chem. C 117, 321 (2013)

    Article  Google Scholar 

  34. A. Ambrosetti, P.L. Silvestrelli, Phys. Rev. B 85, 073101 (2012)

    Article  ADS  Google Scholar 

  35. P.L. Silvestrelli, A. Ambrosetti, Phys. Rev. B 87, 075401 (2013)

    Article  ADS  Google Scholar 

  36. P.L. Silvestrelli, J. Chem. Phys. 139, 054106 (2013)

    Article  ADS  Google Scholar 

  37. P.L. Silvestrelli, A. Ambrosetti, J. Chem. Phys. 140, 124107 (2014)

    Article  ADS  Google Scholar 

  38. V.G. Ruiz, W. Liu, E. Zojer, M. Scheffler, A. Tkatchenko, Phys. Rev. Lett. 108, 146103 (2012)

    Article  ADS  Google Scholar 

  39. L. Andrinopoulos, N.D.M. Hine, A.A. Mostofi, J. Chem. Phys. 135, 154105 (2011)

    Article  ADS  Google Scholar 

  40. S. Grimme, J. Comp. Chem. 27, 1787 (2006)

    Article  Google Scholar 

  41. V. Barone, M. Casarin, D. Forrer, M. Pavone, M. Sambi, A. Vittadini, J. Comp. Chem. 30, 934 (2009)

    Article  Google Scholar 

  42. M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)

    Article  ADS  Google Scholar 

  43. G. Roman-Perez, J.M. Soler, Phys. Rev. Lett. 103, 096102 (2009)

    Article  ADS  Google Scholar 

  44. T. Thonhauser, V.R. Cooper, S. Li, A. Puzder, P. Hyldgaard, D.C. Langreth, Phys. Rev. B 76, 125112 (2007)

    Article  ADS  Google Scholar 

  45. K. Lee, É.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Phys. Rev. B 82, 081101(R) (2010)

    Article  ADS  Google Scholar 

  46. R. Sabatini, T. Gorni, S. de Gironcoli, Phys. Rev. B 87, 041108(R) (2013)

    Article  ADS  Google Scholar 

  47. O.A. Vydrov, T. Van Voorhis, J. Chem. Phys. 133, 244103 (2010)

    Article  ADS  Google Scholar 

  48. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  49. T. Brink, J.S. Murray, P. Politzer, J. Chem. Phys. 98, 4305 (1993)

    Article  ADS  Google Scholar 

  50. A. Bondi, J. Phys. Chem. 68, 441 (1964)

    Article  Google Scholar 

  51. S. Grimme, J. Antony, T. Schwabe, C. Mück-Lichtenfeld, Org. Biomol. Chem. 5, 741 (2007)

    Article  Google Scholar 

  52. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010)

    Article  ADS  Google Scholar 

  53. F. Hanke, M.S. Dyer, J. Biörk, M. Persson, J. Phys. 24, 424217 (2012)

    Google Scholar 

  54. J. Cao, B.J. Berne, J. Chem. Phys. 97, 8628 (1992)

    Article  ADS  Google Scholar 

  55. A.G. Donchev, J. Chem. Phys. 125, 074713 (2006)

    Article  ADS  Google Scholar 

  56. A. Tkatchenko, R.A. Di Stasio, R. Car, M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012)

    Article  ADS  Google Scholar 

  57. A.M. Reilly, A. Tkatchenko, J. Phys. Chem. Lett. 4, 1028 (2013)

    Article  Google Scholar 

  58. A. Tkatchenko, A. Ambrosetti, R.A. Di Stasio, Jr., J. Chem. Phys. 138, 074106 (2013)

  59. A. Ambrosetti, A.M. Reilly, R.A. Di Stasio, Jr., A. Tkatchenko, J. Chem. Phys. 140, 18A508 (2014)

  60. F. Göltl, A. Grünesi, T. Buĉko, J. Hafner, J. Chem. Phys. 137, 114111 (2012)

    Article  ADS  Google Scholar 

  61. T. Buĉko, S. Lebègue, J. Hafner, J.G. Ángyán, Phys. Rev. B 87, 064110 (2013)

    Article  ADS  Google Scholar 

  62. A. Tkatchenko, D. Alfé, K.S. Kim, J. Chem. Theory Comput. 8, 4317 (2012)

    Article  Google Scholar 

  63. P. Jurečka, J. Šponer, J. Černy, P. Hobza, Phys. Chem. Chem. Phys. 8, 1985 (2006)

    Article  Google Scholar 

  64. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J. Phys. 21, 395502 (2009), http://arxiv.org/abs/0906.2569

  65. A. Ferretti, B. Bonferroni, A. Calzolari, M. Buongiorno Nardelli, WanT code. http://www.wannier-transport.org

  66. A. Calzolari, N. Marzari, I. Souza, M. Buongiorno, Nardelli. Phys. Rev. B 69, 035108 (2004)

    Article  ADS  Google Scholar 

  67. Y.N. Zhang, F. Hanke, V. Bortolani, M. Persson, R.Q. Wu, Phys. Rev. Lett. 106, 236103 (2011)

    Article  ADS  Google Scholar 

  68. E. Abad, Y.J. Dappe, J.I. Martnez, F. Flores, J. Ortega, J. Chem. Phys. 134, 044701 (2011)

    Article  ADS  Google Scholar 

  69. J.L. Fajín, F. Illas, J.R.B. Gomes, J. Chem. Phys. 130, 224702 (2009)

    Article  ADS  Google Scholar 

  70. T.S. Chwee, M.B. Sullivan, J. Chem. Phys. 137, 134703 (2012)

    Article  ADS  Google Scholar 

  71. K. Lee, A.K. Kelkkanen, K. Berland, S. Andersson, D.C. Langreth, E. Schröder, B.I. Lundqvist, P. Hyldgaard, Phys. Rev. B 84, 193408 (2011)

    Article  ADS  Google Scholar 

  72. K. Lee, K. Berland, M. Yoon, S. Andersson, E. Schröder, P. Hyldgaard, B.I. Lundqvist, J. Phys. 24, 424213 (2012)

    Google Scholar 

  73. M.-S. Liao, C.-T. Au, C.-F. Ng, Chem. Phys. Lett. 272, 445 (1997)

    Article  ADS  Google Scholar 

  74. A. Michaelides, V.A. Ranea, P.L. de Andres, D.A. King, Phys. Rev. Lett. 90, 216102 (2003)

    Article  ADS  Google Scholar 

  75. A. Hodgson, S. Haq, Surf. Sci. Rep. 64, 381 (2009)

    Article  ADS  Google Scholar 

  76. B.W. Heinrich, L. Limot, M.V. Rastei, C. Iacovita, J.P. Bucher, D.M. Djimbi, C. Massobrio, M. Boero, Phys. Rev. Lett. 107, 216801 (2011)

    Article  ADS  Google Scholar 

  77. R. Resta, S. Sorella, Phys. Rev. Lett. 82, 370 (1999)

    Article  ADS  Google Scholar 

  78. L. He, D. Vanderbilt, Phys. Rev. Lett. 86, 5341 (2001)

    Article  ADS  Google Scholar 

  79. C. Brouder, G. Panati, M. Calandra, C. Mourougane, N. Marzari, Phys. Rev. Lett. 98, 046402 (2007)

    Article  ADS  Google Scholar 

  80. I. Souza, N. Marzari, D. Vanderbilt, Phys. Rev. B 65, 035109 (2001)

    Article  ADS  Google Scholar 

  81. M. Iannuzzi, M. Parrinello, Phys. Rev. B 66, 155209 (2002)

    Article  ADS  Google Scholar 

  82. R.J. Maurer, V.G. Ruiz, A. Tkatchenko, J. Chem. Phys. 143, 102808 (2015)

    Article  ADS  Google Scholar 

  83. M. Rohlfing, T. Bredow, Phys. Rev. Lett. 101, 266106 (2008)

    Article  ADS  Google Scholar 

  84. M. Vanin, J.J. Mortensen, A.K. Kelkkanen, J.M. Garcia-Lastra, K.S. Thygesen, K.W. Jacobsen, Phys. Rev. B 81, 081408 (2010)

    Article  ADS  Google Scholar 

  85. N. Stoner, M. Van Hove, S. Tong, M. Webb, Phys. Rev. Lett. 40, 243 (1978)

    Article  ADS  Google Scholar 

  86. P. Dai, Z. Wu, T. Angot, S.-K. Wang, H. Taub, S. Ehrlich, Phys. Rev. B 59, 15464 (1999)

    Article  ADS  Google Scholar 

  87. G. McElhiney, H. Papp, J. Pritchard, Surf. Sci. 54, 617 (1976)

    Article  ADS  Google Scholar 

  88. R.J. Behm, C.R. Brundle, K. Wandelt, J. Chem. Phys. 85, 1061 (1986)

    Article  ADS  Google Scholar 

  89. K.D. Gibson, S.J. Sibener, J. Chem. Phys. 88, 7862 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Luigi Silvestrelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silvestrelli, P.L., Ambrosetti, A. Van Der Waals-Corrected Density Functional Theory Simulation of Adsorption Processes on Noble-Metal Surfaces: Xe on Ag(111), Au(111), and Cu(111). J Low Temp Phys 185, 183–197 (2016). https://doi.org/10.1007/s10909-016-1515-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1515-y

Keywords

Navigation