Skip to main content
Log in

Electron–Hole Asymmetry Driven Surface Charge Expulsion

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We study an Ising-like dynamic Hubbard (IDHB) model using dynamical mean field theory with an embedding potential. The prominent characteristic of the IDHB model is the broken electron–hole symmetry. Our calculations indicate that the electron–hole asymmetry enhances electron expulsion toward the surface of a semi-infinite bulk. Since correlated hopping amplitude produces the electron–hole asymmetry, it strongly affects the electron expulsion toward the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.E. Hirsch, Dynamic Hubbard model. Phys. Rev. Lett. 87, 206402–4 (2001)

    Article  ADS  Google Scholar 

  2. J.E. Hirsch, Why holes are not like electrons: a microscopic analysis of the differences between holes and electrons in condensed matter. Phys. Rev. B 65, 184502–184520 (2002)

    Article  ADS  Google Scholar 

  3. J.E. Hirsch, Dynamic Hubbard model for solid with hydrogen-like atoms. Phys. Rev. B 90, 104501–104509 (2014)

    Article  ADS  Google Scholar 

  4. J.E. Hirsch, Quantum Monte Carlo and exact diagonalization study of a dynamic Hubbard model. Phys. Rev. B 65, 214510–214516 (2002)

    Article  ADS  Google Scholar 

  5. J.E. Hirsch, F. Marsiglio, Superconducting state in an oxygen hole metal. Phys. Rev. B 39, 11515–11525 (1989)

    Article  ADS  Google Scholar 

  6. J.E. Hirsch, F. Marsiglio, Hole superconductivity: review and some new results. Phys. C 162–164, 591 (1989)

    Article  Google Scholar 

  7. J.E. Hirsch, The origin of the Meissner effect in new and old superconductor. Phys. Scr. 85, 035704 (2012)

    Article  ADS  Google Scholar 

  8. J.E. Hirsch, The London moment: what a rotating superconductor reveals about superconductivity. Phys. Scr. 89, 015806–015810 (2014)

    Article  ADS  Google Scholar 

  9. J.E. Hirsch, Charge expulsion, charge inhomogeneity and phase separation in dynamic Hubbard models. Phys. Rev. B 87, 184506–184512 (2013)

    Article  ADS  Google Scholar 

  10. H. Ishida, A. Liebsch, Embedding approach for dynamical mean field theory of strongly correlated heterostructures. Phys. Rev. B 79, 045130–045138 (2009)

    Article  ADS  Google Scholar 

  11. R. Nourafkan, F. Marsiglio, M. Capone, Metallic surface of a bipolaronic insulator. Phys. Rev. B 82, 115127–115136 (2010)

    Article  ADS  Google Scholar 

  12. R. Nourafkan, F. Marsiglio, Competition between reduced delocalization and charge transfer effects for a two-band Hubbard model. Phys. Rev. B 84, 075133–075135 (2011)

    Article  ADS  Google Scholar 

  13. M. Potthoff, W. Nolting, Surface metal-insulator transition in the Hubbard model. Phys. Rev. B 59, 2549–2555 (1999)

    Article  ADS  Google Scholar 

  14. M. Potthoff, W. Nolting, Metallic surface of a Mott insulator-Mott insulating surface of a metal. Phys. Rev. B 60, 7834–7849 (1999)

    Article  ADS  Google Scholar 

  15. S. Schwieger, M. Potthoff, W. Nolting, Correlation and surface effect in vanadium oxides. Phys. Rev. B 67, 165408–165417 (2003)

    Article  ADS  Google Scholar 

  16. J.K. Freericks, Dynamical mean field theory for strongly correlated inhomogeneous multilayered nanostructures. Phys. Rev. B 70, 195342–195414 (2004)

    Article  ADS  Google Scholar 

  17. G.H. Bach, J.E. Hirsch, F. Marsiglio, Two-site dynamical mean field theory for the dynamic Hubbard model. Phys. Rev. B 82, 155122–155213 (2010)

    Article  ADS  Google Scholar 

  18. G. Georges, G. Kotliar, K. Krauth, M.J. Rozenberg, Dynamical mean field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  19. D. Kalkstein, P. Soven, A Green’s function theory of surface states. Surf. Sci. 26, 85 (1971)

    Article  ADS  Google Scholar 

  20. B. Giang, Dynamical mean field theory for the dynamic Hubbard model, Ph.D. thesis, chapter 6, 2011

  21. J.E. Hirsch, Quasiparticle undressing in a dynamic Hubbard model: exact diagonalization study. Phys. Rev. B 66, 064507–064512 (2002)

    Article  ADS  Google Scholar 

  22. R. Nourafkan, F. Marsiglio, Surface effects in doping a Mott insulator. Phys. Rev. B 83, 155116–155117 (2001)

    Article  ADS  Google Scholar 

  23. M. Potthoff, W. Nolting, Metallic surface of a Mott insulator-Mott insulating surface of a metal. Phys. Rev. B 60, 7834–7849 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author thank Dr. Reza Nourafkan and Dr. Frank Marsiglio for their useful advice. This work is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under the Grant Number 103.02-2012.73

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giang H. Bach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bach, G.H. Electron–Hole Asymmetry Driven Surface Charge Expulsion. J Low Temp Phys 181, 253–262 (2015). https://doi.org/10.1007/s10909-015-1342-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1342-6

Keywords

Navigation