Skip to main content
Log in

Decay of Finite Temperature Superfluid Helium-4 Turbulence

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A mesoscopic model of superfluid helium-4, that describes the dynamics of individual topological defects of the ground state (superfluid vortices) and their (self-consistent) interactions with its quasi-particle excitations (normal-fluid), is solved numerically in order to analyse the physics of decaying homogeneous, isotropic turbulence. The calculations predict several temporal decay regimes not present in classical turbulence decay, the corresponding superfluid and normal-fluid energy spectra, and the experimentally observed \(t^{-1.5}\) scaling for the superfluid vortex line density at large times. The results demonstrate that the origin of this scaling is the energy spent by the superfluid in order to sustain a fluctuating low Reynolds number flow in the normal-fluid, and not the locking of turbulent superfluid and normal-fluid vorticities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.J. Leggett, Quantum Liquids (Oxford University Press, Oxford, 2006)

    Book  Google Scholar 

  2. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (W.A. Benjamin, Inc., Reading, 1975)

    Google Scholar 

  3. H. Pleiner, H.R. Brand, in Pattern Formation in Liquid Crystals, ed. by A. Buka, L. Kramer (Springer, New York, 1996)

    Google Scholar 

  4. J. Maurer, P. Tabeling, Europhys. Lett. 43, 29 (1998)

    Article  ADS  Google Scholar 

  5. S.R. Stalp, L. Skrbek, R.J. Donnelly, Phys. Rev. Lett. 82, 4831 (1999)

    Article  ADS  Google Scholar 

  6. W. Guo, J.D. Wright, S.B. Cahn, J.A. Nikkel, D.N. McKinsey, Phys. Rev. Lett. 102, 235301 (2009)

    Article  ADS  Google Scholar 

  7. P.M. Walmsley, A.I. Golov, H.E. Hall, A.A. Levchenko, W.F. Vinen, Phys. Rev. Lett. 99, 265302 (2007)

    Article  ADS  Google Scholar 

  8. W.F. Vinen, J. Low Temp. Phys. 161, 419 (2010)

    Article  ADS  Google Scholar 

  9. D. Kivotides, J. Fluid Mech. 668, 58 (2011)

    Article  ADS  MATH  Google Scholar 

  10. D. Kivotides, Phys. Fluids 26, 105105 (2014)

    Article  ADS  Google Scholar 

  11. E.A. Calzetta, B.-L.B. Hu, Nonequilibrium Quantum Field Theory (Cambridge University Press, Cambridge, 2008)

    Book  MATH  Google Scholar 

  12. K.W. Schwarz, Phys. Rev. B 31, 5782 (1985)

    Article  ADS  Google Scholar 

  13. D. Kivotides, Phys. Lett. A 341, 193 (2005)

    Article  ADS  MATH  Google Scholar 

  14. L. Thompson, P.C.E. Stamp, Phys. Rev. Lett. 108, 184501 (2012)

    Article  ADS  Google Scholar 

  15. D. Kivotides, S.L. Wilkin, J. Low Temp. Phys. 156, 163 (2009)

    Article  ADS  Google Scholar 

  16. L. Kondaurova, S.K. Nemirovskii, Phys. Rev. B 86, 134506 (2012)

    Article  ADS  Google Scholar 

  17. D. Kivotides, Phys. Rev. B 78, 224501 (2008)

    Article  ADS  Google Scholar 

  18. T. Zhang, S.W. Van Sciver, J. Low Temp. Phys. 138, 865 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demosthenes Kivotides.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kivotides, D. Decay of Finite Temperature Superfluid Helium-4 Turbulence. J Low Temp Phys 181, 68–76 (2015). https://doi.org/10.1007/s10909-015-1320-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1320-z

Keywords

Navigation