Skip to main content

Advertisement

Log in

Electromechanical and Photoluminescence Properties of Al-doped ZnO Nanorods Applied in Piezoelectric Nanogenerators

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A piezoelectric nanogenerator based on Al-doped ZnO (AZO) nanorods with a V-zigzag layer is investigated at a low temperature. The growth temperature, growth time, growth concentration, photoluminescence (PL) spectrum, and AZO epitaxial growth on the ITO glass substrate using aqueous solution are reported and the associated electromechanical and PL properties are discussed. In general, the properties of piezoelectric nanogenerators and their functionality at ultralow temperatures (near liquid helium temperature) are important for applications in extreme environments. A V-zigzag layer is used to enhance the bending and compression deformation of the piezoelectric nanogenerator. The electromechanical properties of AZO nanorods are tested using an ultrasonic wave generator. Results show that the percent transmittance decreases with increasing growth time and growth temperature. The intensities of the PL spectrum and the (002) peak orientation increases with increasing growth temperature. AZO at a low growth temperature of 90 \(^{\circ }\)C has good piezoelectric harvesting efficiency when the piezoelectric nanogenerator has a zigzag structure. The average current, voltage, and power density of the piezoelectric harvesting are 0.76 \(\upmu \)A, 1.35 mV, and 1.026 nW/mm\(^{2}\), respectively. These results confirm the feasibility of growing AZO at low temperature. AZO nanorods have potential for energy harvester applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.Y. Yeon, J.H. Yoon, S.Y. Jin, J.C. Won, High-power properties of piezoelectric hard materials sintered at low temperature for multilayer ceramic actuators. J. Eur. Ceram. Soc. 33(1), 1769–1778 (2013)

    Google Scholar 

  2. V.P. Mineev, Half-quantum vortices in polar phase of superfluid He-3. J. Low Temp. Phys. 177(1–2), 48–58 (2014)

    Article  ADS  Google Scholar 

  3. J.B. Ketterson, Probing the frequency and wavevector dependent response of 3He using patterned piezoelectric transducers. J. Low Temp. Phys. 159(5–6), 606–613 (2010)

    Article  ADS  Google Scholar 

  4. Q. Chen, T. Wang, J. Wu, X. Cheng, X. Wang, B. Zhang, D. Xiao, J. Zhu, Low temperature sintering of Ba\(_0.91\)Ca\(_0.09\)Ti\(_0.916\)Sn\(_0.084\)O\(_3\) lead-free piezoelectric ceramics with the additives of ZnO and MnO\(_2\). J. Electroceram. 32(2–3), 175–179 (2014)

    Article  Google Scholar 

  5. G. Wei, J. Dafei, W. Wanchun, J.M. Humphrey, Low temperature piezoelectric and dielectric properties of lead magnesium niobate titanate single crystals. J. Appl. Phys. 102, 084104 (2007)

    Article  Google Scholar 

  6. T.A. El-Brolossy, O. Saber, S.S. Ibrahim, Determining the thermophysical properties of Al-doped ZnO nanoparticles by the photoacoustic technique. Chin. Phys. B 22(1), 074401 (2013)

    Article  ADS  Google Scholar 

  7. A.E. Jimenez-Gonzalez, Modification of ZnO thin films by Ni, Cu, and Cd doping. J. Solid State Chem. 28(2), 176–180 (1997)

    Article  ADS  Google Scholar 

  8. O. Bamiduro, H. Mustafa, R. Mundle, R.B. Konda, A.K. Pradhan, Metal-like conductivity in transparent Al:ZnO films. Appl. Phys. Lett. 90(25), 252108–252110 (2007)

    Article  ADS  Google Scholar 

  9. P. Kadam, C. Agashe, S.J. Mahamuni, Al-doped ZnO nanocrystals. J. Appl. Phys. 104(10), 103501–103501-4 (2008)

    Article  ADS  Google Scholar 

  10. K.Y. Wu, C.C. Wang, D.H. Chen, Preparation and conductivity enhancement of Al-doped zinc oxide thin films containing trace Ag nanoparticles by the sol-gel process. Nanotechnology 18(30), 305604 (2007)

    Article  ADS  Google Scholar 

  11. X.Y. Xue, L.M. Li, H.C. Yu, Y.J. Chen, Y.G. Yang, Extremely stable field emission from AlZnO nanowire arrays. Appl. Phys. Lett. 89(4), 043118 (2006)

    Article  ADS  Google Scholar 

  12. B.H. Kong, M.K. Choi, H.K. Cho, J.H. Kim, S. Baek, J.H. Lee, Conformal coating of conductive ZnO:Al films as transparent electrodes on high aspect ratio Si microrods. Electrochem. Solid State Lett. 13(2), K12–K14 (2010)

    Article  Google Scholar 

  13. S. Mondal, K.P. Kanta, P. Mitra, Preparation of Al-doped ZnO AZO thin film by SILAR. J. Phys. Sci. 12(1), 221–229 (2008)

    Google Scholar 

  14. W.Y. Chang, T.H. Fang, C.I. Weng, S.S. Yang, Flexible piezoelectric harvesting based on epitaxial growth of ZnO. Appl. Phys. A 102(3), 705–711 (2010)

    Article  ADS  Google Scholar 

  15. Y. Zhou, W. Wu, G. Hu, H. Wu, S. Cui, Hydrothermal synthesis of ZnO nanorod arrays with the addition of polyethyleneimine. Mater. Res. Bull. 43(8–9), 2113–2118 (2008)

    Article  Google Scholar 

  16. K. Elen, H.V. den Rul, A. Hardy, M.K.V. Bael, J. DHaen, R. Peeters, D. Franco, J. Mullens, Hydrothermal synthesis of ZnO nanorods: a statistical determination of the significant parameters in view of reducing the diameter’. Nanotechnology 20(5), 055608 (2009)

    Article  ADS  Google Scholar 

  17. S.K. Park, J.H. Park, K.Y. Ko, S. Yoon, K.S. Chu, W. Kim, Y.R. Do, Hydrothermal-electrochemical synthesis of ZnO nanorods. Cryst. Growth Des. 9(8), 3615–3620 (2009)

    Article  Google Scholar 

  18. J. Kim, J.H. Yun, S.W. Jee, Y.C. Park, M. Ju, S. Han, Y. Kim, J.H. Kim, W.A. Anderson, J.H. Lee, J. Yi, Rapid thermal annealed Al-doped ZnO film for a UV detector. Mater. Lett. 65(4), 786–789 (2011)

    Article  Google Scholar 

  19. Z. Zhan, J. Zhang, Q. Zheng, D. Pan, J. Huang, F. Huang, Z. Lin’, Strategy for preparing Al-doped ZnO thin film with high mobility and high stability. Cryst. Growth Des. 11(1), 21–25 (2011)

    Article  Google Scholar 

  20. S. Cho, S.H. Jung, J.W. Jang, E. Oh, K.H. Lee, Simultaneous synthesis of Al-doped ZnO nanoneedles and zinc aluminum hydroxides through use of a seed layer. Cryst. Growth Des. 8(12), 4553–4558 (2008)

    Article  Google Scholar 

  21. W.Y. Chang, T.H. Fang, C.-H. Syu, Material characteristics of zinc oxide doped aluminum for microharvesting. Appl. Mech. Mater. 80–81(1), 245–249 (2011)

    Article  Google Scholar 

  22. J. Ma, F. Ji, D.H. Zhang, H.L. Ma, S.Y. Li, Optical and electronic properties of transparent conducting ZnO and ZnO:Al films prepared by evaporating method. Thin Solid Films 357(1), 98–101 (1999)

    Google Scholar 

  23. Y. Liu, J. Lian, Optical and electrical properties of aluminum-doped ZnO thin films grown by pulsed laser deposition. Appl. Surf. Sci. 253(7), 3727–3730 (2007)

    Article  ADS  Google Scholar 

  24. X.J. Wang, Q.S. Lei, W. Xu, W.L. Zhou, J. Yu, Preparation of ZnO:Al thin film on transparent TPT substrate at room temperature by RF magnetron sputtering technique. Mater. Lett. 63(16), 1371–1373 (2009)

    Article  Google Scholar 

  25. K.H. Kim, R. Wibowo, A.B. Munir, Properties of Al-doped ZnO thin films sputtered from powder compacted target. Mater. Lett. 60(15), 1931–1935 (2006)

    Article  Google Scholar 

  26. A.F. Aktaruzzaman, G.L. Sharma, L.K. Malthotra, Electrical, optical and annealing characteristics of ZnO:Al films prepared by spray pyrolysis. Thin Solid Films 198(1–2), 67–74 (1991)

    Article  ADS  Google Scholar 

  27. Y.T. Yin, W.X. Que, C.H. Kam, ZnO nanorods on ZnO seed layer derived by sol–gel process. J. Sol-Gel Sci. Technol. 53(3), 605–612 (2010)

    Article  Google Scholar 

  28. T.H. Fang, S.H. Kang, Physical properties of ZnO:Al nanorods for piezoelectric nanogenerator application. Curr. Nanosci. 7(1), 505–511 (2010)

    Article  ADS  Google Scholar 

  29. W.Y. Chang, C.H. Yang, Energy harvesting simulation of piezoelectric ZnO for electromechanical nanogenerators. Adv. Energy Eng. 1(1), 102–107 (2013)

    ADS  Google Scholar 

  30. W.L. Wu, G.G. Siu, C.L. Fu, H.C. Ong, Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Appl. Phys. Lett. 78(1), 2285–2287 (2001)

    Article  ADS  Google Scholar 

  31. Water W., Fang T. H., Ji L. W., Lee C. C., Effect of growth temperature on photoluminescence and piezoelectric characteristics of ZnO nanowires. Mater. Sci. Eng. B 158(1–3), 75–78 (2009)

    Article  Google Scholar 

  32. H.M. Kim, S.K. Jung, J.S. Ahn, Y.J. Kang, K.C. Je, Electrical and optical properties of in2o3-ZnO films deposited on polyethylene terephthalate substrates by radio frequency magnetron sputtering. Jpn. J. Appl. Phys. 42(1), 223–227 (2003)

    Article  ADS  Google Scholar 

  33. X. Wang, J. Song, J. Liu, Z.L. Wang, Drect-current nanogenerator driven by ultrasonic waves. Science 316(1), 102–105 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council of Taiwan under Grants NSC 100-2628-E-151-003-MY3, NSC 100-2221-E-151-018-MY3, and MOST 103-2221-E-150-017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Te-Hua Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, WY., Fang, TH. & Tsai, JH. Electromechanical and Photoluminescence Properties of Al-doped ZnO Nanorods Applied in Piezoelectric Nanogenerators. J Low Temp Phys 178, 174–187 (2015). https://doi.org/10.1007/s10909-014-1249-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1249-7

Keywords

Navigation