Skip to main content
Log in

Quartz Tuning Forks and Acoustic Phenomena: Application to Superfluid Helium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Immersed mechanical resonators are well suited for probing the properties of fluids, since the surrounding environment influences the resonant characteristics of such oscillators in several ways. Quartz tuning forks have gained much popularity in recent years as the resonators of choice for studies of liquid helium. They have many superior properties when compared to other oscillating bodies conventionally used for this purpose, such as vibrating wires. However, the intricate geometry of a tuning fork represents a challenge for analyzing their behavior in a fluid environment—analytical approaches do not carry very far. In this article the characteristics of immersed quartz tuning fork resonators are studied by numerical simulations. We account for the compressibility of the medium, that is acoustic phenomena, and neglect viscosity, with the aim to realistically model the oscillator response in superfluid helium. The significance of different tuning fork shapes is studied. Acoustic emission in infinite medium and acoustic resonances in confined volumes are investigated. The results can aid in choosing a quartz tuning fork with suitable properties for experiments, as well as interpreting measured data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. O. Clubb O. V. L. Buu, R. M. Bowley, R. Nyman, J. R. Owers-Bradley, J. Low Temp. Phys. 136, 1 (2004)

  2. R. Blaauwgeers, M. Blazkova, M. Clovecko, V. Eltsov, R. de Graaf, J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R. Solntsev, D. Zmeev, J. Low Temp. Phys. 146, 537 (2007)

  3. M. Blažková, M. Človečko, E. Gažo, L. Skrbek, P. Skyba, J. Low Temp. Phys. 148, 305 (2007)

  4. M. Blažková, M. Človečko, V. Eltsov, E. Gažo, R. de Graaf, J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R. Solntsev, W. Vinen, J. Low Temp. Phys. 150, 525 (2008)

  5. E. Pentti, J. Rysti, A. Salmela, A. Sebedash, J. Tuoriniemi, J. Low Temp. Phys. 165, 132 (2011)

  6. D. Bradley, M. Fear, S. Fisher, A. Gunault, R. Haley, C. Lawson, P. McClintock, G. Pickett, R. Schanen, V. Tsepelin, L. Wheatland, J. Low Temp. Phys. 156, 116 (2009)

    Article  ADS  Google Scholar 

  7. D. Bradley, M. loveko, S. Fisher, D. Garg, A. Gunault, E. Guise, R. Haley, G. Pickett, M. Poole, V. Tsepelin, J. Low Temp. Phys. 171, 750 (2013)

  8. J. Rysti, J. Tuoriniemi, J. Low Temp. Phys. 171, 273 (2013)

  9. H. Kuttruff, Room Acoustics, 5th edn. (Spon Press, London, 2009)

    Google Scholar 

  10. L. Landau, E. Lifshitz, Fluid Mechanics, 2nd edn. (Fluid Mechanics, Oxford, 1987)

    MATH  Google Scholar 

  11. A. Bayliss, M. Gunzburger, E. Turkel, SIAM J. Appl. Math. 42, 430 (1982)

  12. E. Pentti, J. Tuoriniemi, A. Salmela, A. Sebedash, J. Low Temp. Phys. 150, 555 (2008a)

    Article  ADS  Google Scholar 

  13. E.M. Pentti, J.T. Tuoriniemi, A.J. Salmela, A.P. Sebedash, Phys. Rev. B 78, 064509 (2008b)

  14. K. Karrai, R. Grober, Proc. SPIE 2535, 69 (1995)

  15. J. Tuoriniemi, J. Rysti, A. Salmela, M. Manninen, J. Phys. 400, 012077 (2012)

  16. D. Schmoranzer, M. La Mantia, G. Sheshin, I. Gritsenko, A. Zadorozhko, M. Rotter, L. Skrbek, J. Low Temp. Phys. 163, 317 (2011)

  17. D. I. Bradley, M. Človečko, S. N. Fisher, D. Garg, E. Guise R. P. Haley, O. Kolosov, G. R. Pickett, V. Tsepelin, D. Schmoranzer, L. Skrbek, Phys. Rev. B 85, 014501 (2012)

  18. I. Gritsenko, A. Zadorozhko, G. Sheshin, J. Low Temp. Phys. 171, 194 (2013)

  19. A. Salmela, J. Tuoriniemi, E. Pentti, A. Sebedash, J. Rysti, J. Phys. 150, 012040 (2009)

  20. A. Salmela, J. Tuoriniemi, J. Rysti, J. Low Temp. Phys. 162, 678 (2011)

Download references

Acknowledgments

We thank F. B. Rasmussen for useful comments. This work has been supported in part by the EU 7th Framework Programme (FP7/2007-2013, Grant No. 228464 Microkelvin) and by the Academy of Finland through its LTQ CoE Grant (Project no. 250280). We also thank the National Doctoral Programme in Materials Physics for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rysti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rysti, J., Tuoriniemi, J. Quartz Tuning Forks and Acoustic Phenomena: Application to Superfluid Helium. J Low Temp Phys 177, 133–150 (2014). https://doi.org/10.1007/s10909-014-1203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1203-8

Keywords

Navigation