Skip to main content
Log in

Topological Matter: Graphene and Superfluid \(^3\)He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The physics of graphene and of the superfluid phases of \(^3\)He have many common features. Both systems are topological materials where quasiparticles behave as relativistic massless (Weyl, Majorana or Dirac) fermions. We formulate the points where these features are overlapping. This will allow us to use graphene to study the properties of superfluid \(^3\)He, to use superfluid \(^3\)He to study the properties of graphene, and to use both of them in combination to study the physics of topological quantum vacuum. We suggest also some particular experiments with superfluid \(^3\)He using graphene as an atomically thin membrane impenetrable for He atoms but allowing for spin, momentum and energy transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.E. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003)

    MATH  Google Scholar 

  2. M.I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  3. X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011)

    Article  ADS  Google Scholar 

  4. M.I. Katsnelson, G.E. Volovik, M.A. Zubkov, Euler–Heisenberg effective action and magnetoelectric effect in multilayer graphene. Ann. Phys. (N.Y.) 331, 160–187 (2013)

    Google Scholar 

  5. M.I. Katsnelson, G.E. Volovik, M.A. Zubkov, Unruh effect in vacua with anisotropic scaling: applications to multilayer graphene. Ann. Phys. (N.Y.) 336, 36–55 (2013)

    Google Scholar 

  6. T.T. Heikkilä, N.B. Kopnin, G.E. Volovik, Flat bands in topological media. JETP Lett. 94, 233–239 (2011)

    Article  ADS  Google Scholar 

  7. F. Wilczek, Majorana returns. Nat. Phys. 5, 614–618 (2009)

    Article  Google Scholar 

  8. V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012)

    Article  ADS  Google Scholar 

  9. L. Kou, B. Yan, F. Hu, S.-C. Wu, T.O. Wehling, C. Felser, C. Chen, T. Frauenheim, Graphene-based topological insulator with an intrinsic bulk band gap above room temperature. arXiv:1310.2580

  10. J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. van der Zande, J.M. Parpia, H.G. Craighead, P.L. McEuen, Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008)

    Article  ADS  Google Scholar 

  11. O. Leenaerts, B. Partoens, F.M. Peeters, Graphene: a perfect nanoballoon. Appl. Phys. Lett. 93, 193107 (2008)

    Article  ADS  Google Scholar 

  12. L.W. Drahushuk, M.S. Strano, Mechanisms of gas permeation through single layer graphene membranes. Langmuir 28, 16671–16678 (2012)

    Article  Google Scholar 

  13. Y. Kwon, D.M. Ceperley, \(^4\)He adsorption on a single graphene sheet: path-integral Monte Carlo study. Phys. Rev. B 85, 224501 (2012)

    Article  ADS  Google Scholar 

  14. L. Reatto, M. Nava, D.E. Galli, C. Billman, J.O. Sofo, M.W. Cole, Novel substrates for Helium adsorption: graphane and Graphene Fluoride. J. Phys.: Conf. Ser. 400, 012010 (2012)

    ADS  Google Scholar 

  15. E.V. Castro, H. Ochoa, M.I. Katsnelson, R.V. Gorbachev, D.C. Elias, K.S. Novoselov, A.K. Geim, F. Guinea, Limits on charge carrier mobility in suspended graphene due to flexural phonons. Phys. Rev. Lett. 105, 266601 (2010)

    Article  ADS  Google Scholar 

  16. H. Ochoa, E.V. Castro, M.I. Katsnelson, F. Guinea, Temperature-dependent resistivity in bilayer graphene due to flexural phonons. Phys. Rev. B 83, 235416 (2011)

    Article  ADS  Google Scholar 

  17. I.V. Gornyi, V. Yu. Kachorovskii, A.D. Mirlin, Conductivity of suspended graphene at the Dirac point. Phys. Rev. B 86, 165413 (2012)

    Google Scholar 

  18. V.B. Eltsov, P.J. Heikkinen, V.V. Zavjalov, Gravity waves on the surface of topological superfluid \(^3\)He-B. arXiv:1302.0764

  19. L. Deike, J.-C. Bacri, E. Falcon, Nonlinear waves on the surface of a fluid covered by an elastic sheet. J. Fluid Mech. 733, 394 (2013). arXiv:1309.6990

    Google Scholar 

  20. M.M. Salomaa, G.E. Volovik, Cosmiclike domain walls in superfluid \(^3\)He-B: instantons and diabolical points in (k, \(bfr\)) space. Phys. Rev. B 37, 9298–9311 (1988)

    Google Scholar 

  21. G.E. Volovik, Fermion zero modes at the boundary of superfluid \(^3\)He-B. JETP Lett. 90, 398–401 (2009)

    Article  ADS  Google Scholar 

  22. G.E. Volovik, Topological superfluid \(^3\)He-B in magnetic field and Ising variable. JETP Lett. 91, 201–205 (2010)

    Article  ADS  Google Scholar 

  23. J.L. Manes, F. de Juan, M. Sturla, M.A.H. Vozmediano, Generalized effective hamiltonian for graphene under non-uniform, strain. arXiv:1308.1595

  24. M.A. Zubkov, G.E. Volovik, Emergent gravity in graphene. arXiv:1308.2249

  25. T. Mizushima, M. Sato, K. Machida, Symmetry protected topological order and spin susceptibility in superfluid \(^3\)He-B. Phys. Rev. Lett. 109, 165301 (2012)

    Article  ADS  Google Scholar 

  26. S.B. Chung, S.-C. Zhang, Detecting the Majorana fermion surface state of \(^3\)He-B through spin relaxation. Phys. Rev. Lett. 103, 235301 (2009)

    Article  ADS  Google Scholar 

  27. Q. Liu, C.-X. Liu, C. Xu, X.-L. Qi, S.-C. Zhang, Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102, 156603 (2009)

    Article  ADS  Google Scholar 

  28. A.S. Borovik-Romanov, Yu. M. Bunkov, V.V. Dmitriev, Yu. M. Mukharskiy, Long-lived induction signal in superfluid \(^3\)He-B. JETP Lett. 40, 1033–1037 (1984)

    Google Scholar 

  29. A.S. Borovik-Romanov, Yu. M. Bunkov, V.V. Dmitriev, Yu. M. Mukharskiy, K. Flachbart, Experimental study of separation of magnetization precession in \(^3\)He-B into two magnetic domains. Sov. Phys. JETP 61, 1199–1206 (1985)

    Google Scholar 

  30. I.A. Fomin, Long-lived induction signal and spatially nonuniform spin precession in \(^3\)He-B. JETP Lett. 40, 1037–1040 (1984)

    ADS  Google Scholar 

  31. I.A. Fomin, Separation of magnetization precession in \(^3\)He-B into two magnetic domains. Theory. JETP 61, 1207–1213 (1985)

    Google Scholar 

  32. Yu.M. Bunkov, G.E. Volovik, in Spin Superfluidity and Magnon Bose–Einstein Condensation. Novel Superfluids, eds. by K.H. Bennemann, J.B. Ketterson. International Series of Monographs on Physics 156, Volume 1, Chapter 4 (2013), pp. 253–311. arXiv:1003.4889

  33. S. Autti, Yu. M. Bunkov, V.B. Eltsov, P.J. Heikkinen, J.J. Hosio, P. Hunger, M. Krusius, G.E. Volovik, Self-trapping of magnon Bose–Einstein condensates in the ground state and on excited levels: from harmonic to box confinement. Phys. Rev. Lett. 108, 145303 (2012)

    Google Scholar 

  34. S. Autti, V.B. Eltsov, G.E. Volovik, Bose analogs of MIT bag model of hadrons in coherent precession. JETP Lett. 95, 544–548 (2012)

    Article  ADS  Google Scholar 

  35. P.J. Heikkinen, S. Autti, V.B. Eltsov, J.J. Hosio, M. Krusius, V.V. Zavjalov, Relaxation of Bose–Einstein condensates of magnons in magneto-textural traps in superfluid \(^3\)He-B. J. Low Temp. Phys 175, 3–16 (2014)

    Article  ADS  Google Scholar 

  36. G.E. Volovik, V.M. Yakovenko, Fractional charge, spin and statistics of solitons in superfluid \(^3\)He film. J. Phys.: Cond. Matter 1, 5263–5274 (1989)

    ADS  Google Scholar 

  37. A.S. Borovik-Romanov, Yu.M. Bunkov, A. de Waard, V.V. Dmitriev, V. Makrotsieva, Yu.M. Mukharskiy, D.A. Sergatskov, Observation of a spin supercurrent analog of the Josephson effect. JETP Lett. 47, 478–482 (1988)

    Google Scholar 

  38. R.R. Nair, I.-L. Tsai, M. Sepioni, O. Lehtinen, J. Keinonen, A.V. Krasheninnikov, A.H. Castro, Neto, M.I. Katsnelson, A.K. Geim, I.V. Grigorieva, Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nat. Commun. 4, 2010 (2013)

  39. V.N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, A.H. Castro Neto, Electron–electron interactions in graphene: current status and perspectives. Rev. Mod. Phys. 84, 1067–1125 (2012)

  40. E. Kogan, RKKY interaction in graphene. Phys. Rev. B 84, 115119 (2011)

    Article  ADS  Google Scholar 

  41. S.V. Maleev, Dipole forces in two-dimensional and layered ferromagnets. Sov. Phys. JETP 43, 1240–1247 (1976)

    ADS  Google Scholar 

  42. A. Grechnev, V.Yu. Irkhin, M.I. Katsnelson, O. Eriksson, Thermodynamics of a two-dimensional Heisenberg ferromagnet with dipolar interaction. Phys. Rev. B 71, 024427 (2005)

    Google Scholar 

  43. A. Casey, M. Neumann, B. Cowan, J. Saunders, N. Shannon, Two-dimensional ferromagnetism of a \(^3\)He film: influence of weak frustration. Phys. Rev. Lett. 111, 125302 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support by the EU 7th Framework Programme (FP7/2007-2013, Grant \(\#\)228464 Microkelvin), GEV by the Academy of Finland through its LTQ CoE Grant (Project \(\#\)250280) and MIK by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) via Spinoza Prize.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Volovik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsnelson, M.I., Volovik, G.E. Topological Matter: Graphene and Superfluid \(^3\)He. J Low Temp Phys 175, 655–666 (2014). https://doi.org/10.1007/s10909-014-1167-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1167-8

Keywords

Navigation