Skip to main content
Log in

Contribution of Chirality to the Adsorption of a Kr Atom on a Single Wall Carbon Nanotube

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Recent theoretical and simulation studies (Lueking et al. Phys Rev B 75:195425, 2007; Kim et al. J Phys Chem 115:7249–7257, 2011) on the adsorption of Kr on suspended nanotubes yielded different commensurate phases at submonolayer coverage than those found in a pioneering experiment (Wang et al. Science 327:552–555, 2010). This controversy between calculations and experiments is yet to be resolved. One of the tentative explanations of the apparent discrepancy is the possibly different chirality as the chirality of the nanotubes used in the experiment is not known. To address the question on chirality, we calculated the adsorption potential of krypton atoms on two sets of single wall carbon nanotubes of same radii with distinct chiralities. We found novel symmetries of the adsorption sites on a nanotube, which systematically vary depending on its chirality with an unexpected, yet intuitive delicacy. The same approach is equally feasible for other gases (Ar, Xe, CH\(_{4}\), etc.). The results of classical grand canonical Monte Carlo simulations confirm the predicted behavior of adsorption phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z. Wang, J. Wei, P. Morse, J.G. Dash, O.E. Vilches, D.H. Cobden, Science 327, 552–555 (2010)

    Article  ADS  Google Scholar 

  2. H.-C. Lee, O.E. Vilches, Z. Wang, E. Fredrickson, P. Morse, R. Roy, B. Dzyubenko, D.H. Cobden, J. Low Temp. Phys. (2013). doi:10.1007/s10909-012-0642-3

    Google Scholar 

  3. T. Coffey, J. Krim, Phys. Rev. Lett. 95, 076101 (2005)

    Article  ADS  Google Scholar 

  4. J. Krim, A. Widom, Phys. Rev. B 38, 12184–12189 (1988)

    Article  ADS  Google Scholar 

  5. L.W. Bruch, M.W. Cole, E. Zaremba, Physical adsorption: forces and phenomena, vol. 6 (Dover Publications, Mineola, 2007)

    Google Scholar 

  6. A.D. Lueking, M.W. Cole, Phys. Rev. B 75, 195425 (2007)

    Article  ADS  Google Scholar 

  7. H.-Y. Kim, M.W. Cole, M. Mbaye, S.M. Gatica, J. Phys. Chem. 115, 7249–7257 (2011)

    Article  Google Scholar 

  8. J. Watson, K. Ihokura, MRS Bull. 24, 14–15 (1999)

    Google Scholar 

  9. J.H. Seinfeld, S.N. Pandis, Atmospheric chemistry and physics: from air pollution to climate change (Wiley, New York, 1998)

    Google Scholar 

  10. M.P. Anantram, F. Leonard, Rep. Prog. Phys. 69, 507–561 (2006). and references therein

    Article  ADS  Google Scholar 

  11. Y. Takao, K. Miyazaki, Y. Shimizu, M. Egashira, J. Electrochem. Soc. 141, 1028–1034 (1994)

    Article  Google Scholar 

  12. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297, 787–792 (2002)

    Article  ADS  Google Scholar 

  13. P. Cherukuri, C.J. Gannon, T.K. Leeuw, H.K. Schmidt, R.E. Smalley, S.A. Curley, R.B. Weisman, Proc. Natl. Acad. Sci. USA 103, 18882–18886 (2006)

    Article  ADS  Google Scholar 

  14. G.G. Samsonidze, R. Saito, A. Jorio, M.A. Pimenta, A.G. Souza Filho, A. Grüneis, G. Dresselhaus, M.S. Dresselhaus, J. Nanosci. Nanotech. 3, 431–458 (2003)

    Article  Google Scholar 

  15. W.E. Carlos, M.W. Cole, Phys. Rev. Lett. 43, 697–700 (1979)

    Article  ADS  Google Scholar 

  16. W.E. Carlos, M.W. Cole, Surf. Sci. 91, 339–357 (1980)

    Article  ADS  Google Scholar 

  17. L.W. Bruch, H. Watanabe, Surf. Sci. 65, 619–632 (1977)

    Article  ADS  Google Scholar 

  18. W.E. Carlos, M.W. Cole, Phys. Rev. B 21, 3713–3720 (1980)

    Article  ADS  Google Scholar 

  19. M.W. Cole, D.R. Frankl, D.L. Goodstein, Rev. Mod. Phys. 53, 199–210 (1981)

    Article  ADS  Google Scholar 

  20. R.S. Berry, S.A. Rice, J. Ross, Physical chemistry (John Wiley, New York, 1980). Table 21.13

    Google Scholar 

  21. G. Stan, M.J. Bojan, S. Curtarolo, S.M. Gatica, M.W. Cole, Phys. Rev. B 62, 2173–2180 (2000)

    Article  ADS  Google Scholar 

  22. H. Margenau, N.R. Kestner, Theory of intermolecular forces (Pergamon, Oxford, 1969)

  23. L.W. Bruch, M.W. Cole, H.-Y. Kim, J. Phys.: Condens. Matter 22, 304001 (2010)

    Google Scholar 

  24. J.C. Phillips, Covalent bonding in crystals and molecules and polymers (University of Chicago Press, Chicago, 1969)

    Google Scholar 

  25. R. Langlet, M. Arab, F. Picaud, M. Devel, C. Girardet, J. Chem. Phys. 121, 9655–9665 (2004)

    Article  ADS  Google Scholar 

  26. L. Jensen, P.-O. Astrand, K.V. Mikkelsen, J. Phys. Chem. A 108, 8795–8800 (2004)

    Article  Google Scholar 

  27. L.X. Benedict, S.G. Louie, M.L. Cohen, Phys. Rev. B 52, 8541–8549 (1995)

    Article  ADS  Google Scholar 

  28. E.N. Brothers, A.F. Izmaylov, G.E. Scuseria, K.N. Kudin, J. Phys. Chem. 112, 1396–1400 (2008)

    Article  Google Scholar 

  29. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197–200 (2005)

    Article  ADS  Google Scholar 

  30. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature 446, 60–63 (2007)

    Article  ADS  Google Scholar 

  31. W.A. Steele, Interaction of gases with solid surfaces (Pergamon Press, New York, 1974)

    Google Scholar 

  32. W.A. Steele, Surf. Sci. 36, 317–352 (1973)

    Article  ADS  Google Scholar 

  33. B. Yakobson, R. Smalley, Am. Sci. 85, 324–337 (1997)

    ADS  Google Scholar 

  34. E.N. Shamina, N.G. Lebedev, Russian. J. Phys. Chem. B 6, 448–454 (2012)

    Google Scholar 

  35. L. Mandeltort, D.-L. Chen, W.A. Saidi, J.K. Johnson, M.W. Cole, J.T. Yates Jr, J. Am. Chem. Soc. 135, 7768–7776 (2013). doi:10.1021/ja402928s

    Article  Google Scholar 

Download references

Acknowledgments

Kim acknowledges the support from Louisiana Board of Regents-RCS Grant (LEQSF(2012-15)-RD-A-19). Mbaye and Gatica acknowledge the support from NSF (DMR 1006010). Kim thanks Milton Cole for helpful comments on the earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hye-Young Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HY., Booth, E.C., Mbaye, M.T. et al. Contribution of Chirality to the Adsorption of a Kr Atom on a Single Wall Carbon Nanotube. J Low Temp Phys 175, 590–603 (2014). https://doi.org/10.1007/s10909-014-1095-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1095-7

Keywords

Navigation