Skip to main content
Log in

Neutrino Physics with Low-Temperature Detectors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In the last years, neutrino physics has provided exciting discoveries that for the first time have cracked the solid building of the Standard Model. However, many mysteries remain, and prospects are even more appealing. Low temperature detectors can give fundamental contributions to this field. They already play a major role in the study of neutrinoless double beta decay, a rare nuclear process that can ascertain if neutrino is a self-conjugate elementary fermion and fix its mass scale. Cuoricino, a project based on macro-bolometers, is the most sensitive double-beta-decay search in the world together with the much debated Heidelberg–Moscow experiment. CUORE, its natural continuation, is one of the most promising experiments under construction or commissioning, capable to start to attack the so-called inverted hierarchy region of the neutrino mass pattern. Several ideas based on low-temperature detectors (among which the simultaneous detection of phonon and scintillation light) are among the most promising approaches for next-generation experiments, capable to cover fully the inverted hierarchy region. In other sectors of neutrino physics, like the direct measurement of the neutrino mass in the MARE and ECHO projects or the detection of coherent neutrino-nucleus elastic scattering, low temperature detectors look less mature scientifically. However, they remain extremely promising devices to address these very challenging searches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Strumia, F. Vissani, arXiv:hep-ph/0606054v3 (2006)

  2. J. Lesgourgues, S. Pastor, Phys. Rep. 429, 307 (2006)

    Article  ADS  Google Scholar 

  3. F.T. Avignone III, S.R. Elliott, J. Engel, Rev. Mod. Phys. 80, 481 (2008)

    Article  ADS  Google Scholar 

  4. E.W. Otten, C. Weinheimer, Rep. Prog. Phys. 71, 086201 (2008)

    Article  ADS  Google Scholar 

  5. G. Mention et al., arXiv:1101.2755v4 (2011)

  6. C. Enss (ed.), Cryogenic Particle Detection. Topics in Applied Physics, vol. 99 (Springer, Berlin, 2005)

    Google Scholar 

  7. F. Bezrukov, H. Hettmansperger, M. Lindner, Phys. Rev. D 81, 085032 (2010)

    Article  ADS  Google Scholar 

  8. H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, Mod. Phys. Lett. A 21, 1547 (2006)

    Article  ADS  Google Scholar 

  9. E. Andreotti et al., Astropart. Phys. 34, 822 (2011)

    Article  ADS  Google Scholar 

  10. C. Arnaboldi et al., Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 518, 775 (2004)

    Article  ADS  Google Scholar 

  11. M. Pavan et al., Eur. Phys. J. A 36, 159 (2008)

    Article  ADS  Google Scholar 

  12. L. Foggetta et al., Appl. Phys. Lett. 86, 134186 (2005)

    Article  Google Scholar 

  13. L. Foggetta et al., Astropart. Phys. 34, 809 (2011)

    Article  ADS  Google Scholar 

  14. C. Nones et al., Superconducting aluminum layers as pulse shape modifiers: an innovative solution to fight against surface background in 0νββ experiments. J. Low Temp. Phys. (2012). doi:10.1007/s10909-012-0558-y (this issue)

    Google Scholar 

  15. C. Bucci, P. Gorla, W. Seidel, arXiv:1103.5296v1 (2011)

  16. T. Tabarelli de Fatis, Eur. Phys. J. C 65, 359 (2010)

    Article  ADS  Google Scholar 

  17. J.W. Beeman et al., arXiv:1106.6286v1 (2011)

  18. L. Gonzalez-Mestres, D. Perret-Gallix, in Low Temperature Detectors for Neutrinos and Dark Matter—II, Proceedings of LTD-2, Annecy, France (Editions Frontières, Gif-sur-Yvette, 1988)

    Google Scholar 

  19. A. Alessandrello et al., Phys. Lett. B 420, 109 (1998)

    Article  ADS  Google Scholar 

  20. G. Angloher et al., Astropart. Phys. 18, 43 (2002)

    Article  ADS  Google Scholar 

  21. A. Giuliani et al., LUCIFER: an experimental breakthrough in the search for neutrinoless double beta decay, in Proceedings of the 5th International BEYOND 2010 Conference, Cape Town, South Africa (World Scientific, Singapore, 2010)

    Google Scholar 

  22. C. Arnaboldi et al., Astropart. Phys. 34, 143 (2010)

    Article  ADS  Google Scholar 

  23. L. Gironi et al., J. Instrum. 5, P11007 (2010)

    Article  Google Scholar 

  24. C. Arnaboldi et al., Astropart. Phys. 34, 344 (2011)

    Article  ADS  Google Scholar 

  25. S.J. Lee et al., Astropart. Phys. 34, 732 (2011)

    Article  ADS  Google Scholar 

  26. J.W. Beeman et al., An improved ZnMoO4 scintillating bolometer for the search for neutrinoless double beta decay of 100Mo. J. Low Temp. Phys. (2012). doi:10.1007/s10909-012-0573-2 (this issue)

    Google Scholar 

  27. C. Arnaboldi et al., Astropart. Phys. 34, 797 (2011)

    Article  ADS  Google Scholar 

  28. N. Coron et al., Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 520, 159 (2004)

    Article  ADS  Google Scholar 

  29. J. Wolf, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 623, 442 (2010)

    Article  ADS  Google Scholar 

  30. E. Andreotti, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 572, 208 (2007)

    Article  ADS  Google Scholar 

  31. J.P. Porst et al., Metallic magnetic calorimeters with superconducting rhenium absorber for direct neutrino mass measurements. J. Low Temp. Phys. (2012) (this issue)

  32. A. Nucciotti, E. Ferri, O. Cremonesi, Astropart. Phys. 34, 80 (2010)

    Article  ADS  Google Scholar 

  33. M. Galeazzi et al., Phys. Rev. Lett. 86, 1978 (2001)

    Article  ADS  Google Scholar 

  34. A. De Rujula, M. Lusignoli, Phys. Lett. B 118, 429 (1982)

    Article  ADS  Google Scholar 

  35. A. Nucciotti et al., arXiv:1012.2290v1 (2012)

  36. A.J. Anderson et al., arXiv:1103.4894v1 (2011)

  37. J.A. Formaggio et al., arXiv:1107.3512v2 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Giuliani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giuliani, A. Neutrino Physics with Low-Temperature Detectors. J Low Temp Phys 167, 991–1003 (2012). https://doi.org/10.1007/s10909-012-0576-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0576-9

Keywords

Navigation