Skip to main content
Log in

Tiny Signals from the Human Brain: Acquisition and Processing of Biomagnetic Fields in Magnetoencephalography

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Low-temperature superconductivity plays an important role in some specific biomedical applications, and, in particular, in non-invasive imaging methods of human brain activity. Superconducting magnets are indispensable for functional magnetic resonance imaging (fMRI) which allows functional imaging of the brain with high spatial but poor temporal resolution. Superconducting quantum interference devices (SQUIDs) are the most sensitive magnetic field detectors. Up to a few hundreds of SQUIDs are nowdays used in modern whole-head magnetoencephalography (MEG) systems. They allow tracking brain activation with a superior temporal resolution of milliseconds, which is a quintessential condition for the monitoring of brain dynamics and the understanding of information processing in the human brain. We introduce the prerequisites of MEG data acquisition and briefly review two established methods of biomagnetic signal processing: The concept of signal averaging, and the subsequent source identification as a solution of the biomagnetic inverse problem. Beside these standard techniques, we discuss advanced methods for signal processing in MEG, which take into account the frequency content of the recorded signal. We briefly refer to the prospects of Fourier analysis and wavelet transform in MEG data analysis, and suggest matching pursuit as a promising tool for signal decomposition and reconstruction with high resolution in time-frequency plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bednorz J.G., Müller K.A., (1986). Zeitschrift für Physik B 64, 189

    Article  Google Scholar 

  2. Lauterbur P.C.,(1973). Nature 242, 190

    Article  ADS  Google Scholar 

  3. Mansfield P., Maudsley A.A., (1977). J. Mag. Resonan. 27, 101

    Google Scholar 

  4. Hämäläinen M., Hari R., Ilmoniemi R.J., Knuutila J., Lounasmaa O.V., (1993). Rev. Modern Phys. 65, 413

    Article  ADS  Google Scholar 

  5. Jezzard P., Matthews P.M., Smith S.M., Functional MRI. An introduction to methods, Oxford University Press. 2001.

  6. Buxton R.B., Introduction to functional magnetic resonance imaging, Cambridge University Press. 2002.

  7. Z.-L. Lu and L. Kaufman, Magnetic source imaging of the human brain, Lawrence Erlbaum Associates. 2003.

  8. J. Vrba, in ed. Applications of superconductivity H.Weinstock (Dordrecht, The Netherlands: Kluwer Academic, 2000).

  9. Wikswo J.P. Jr, (1995). IEEE Trans. Appl. Supercond. 5, 74

    Article  Google Scholar 

  10. Vrba J., Robinson S.E., (2001). Methods 25, 249

    Article  Google Scholar 

  11. Uusitalo M., Ilmoniemi R., (1997). Med. Biol Eng. Comput. 35, 135

    Article  Google Scholar 

  12. S. Taulu and M. Kajola, J. Appl. Phys. 97, 124905.0–10, (2005).

  13. Näätänen R., Picton T., (1987). Psychophysiology 24, 375

    Article  Google Scholar 

  14. von Helmholtz H., (1853). Annalen der Physik und Chemie 89, 211–353

    Article  ADS  Google Scholar 

  15. Sarvas J., (1987). Phys. Med. Biol. 32, 11

    Article  Google Scholar 

  16. M. Scherg, in eds. Evoked Magnetic Fields and Electric Potentials, volume 6 of Advances in Audiology, F. Grandori, M. Hoke, and Romani G.L. (Karger, Basel, 1990).

  17. Mosher J.C., Lewis P.S., Leahy R.M., (1992). IEEE Trans. Biomed. Eng. 39, 541

    Article  Google Scholar 

  18. Mosher J.C., Leahy R.M., (1999). IEEE Tans. Signal Process. 47, 332

    Article  Google Scholar 

  19. Michel C.M., Murray M.M., Lantz G., Gonzalez S., Spinelli L., Grave dePeralta R., (2004). Clin. Neurophys. 115: 2195

    Article  Google Scholar 

  20. Dawson G.D., (1954). Electroen. Clin. Neuro. 6, 65

    Article  Google Scholar 

  21. Truccolo W., Ding M., Knuth K., Nakamura R., Bressler S., (2002). Clin. Neurophys. 113, 206

    Article  Google Scholar 

  22. deMunck J.C., Bijma F., Gaura P., Sielużycki C.A., Branco M.I., Heethaar R.M., (2004). IEEE Trans. Biomed. Eng. 51(12): 2123

    Article  Google Scholar 

  23. S. Mallat, A wavelet tour of signal processing, Academic Press, New York, second edition. 1999.

  24. W.J. Williams, in ed. Time frequency and wavelets in biomedical signal processing, IEEE Press Series in Biomedical Engineering, M. Akay, (IEEE press, New Jersey, 1997).

  25. Mallat S., Zhang Z., (1993). IEEE Trans. Signal Process. 41: 3397

    Article  MATH  Google Scholar 

  26. Durka P.J., Ircha D., Blinowska K.J., (2001). IEEE Trans. Signal Process. 49(3): 507

    Article  Google Scholar 

  27. P.J. Durka and K.J. Blinowska, in ed. Time frequency and wavelets in biomedical signal processing, IEEE Press Series in Biomedical Engineering, M. Akay, (IEEE press, New Jersey, 1997).

  28. żygierewicz J., Blinowska K.J., Durka P.J., Szelenberger W., Niemcewicz Sz., Androsiuk W., (1999). Clin. Neurophys. 110(12): 2136

    Article  Google Scholar 

  29. Durka P.J., Ircha D., Neuper Ch., Pfurtscheller G., (2001). Med. Biol. Eng. Comp. 39(3): 315

    Article  Google Scholar 

  30. Jouny C.C., Franaszczuk P.J., Bergey G.K., (2003). Clin. Neurophys., 114, 426

    Article  Google Scholar 

  31. Durka P.J., Matysiak A., Montes E.M., Valdés Sosa P., Blinowska K.J., (2005). J. Neurosci. Method. 148(1): 49

    Article  Google Scholar 

  32. Matysiak A., Durka P.J., Montes E.M., Barwiński M., Zwoliński P., Roszkowski M., Blinowska K.J., (2005). Acta Neurobiol. Exp. 65, 435

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard König.

Rights and permissions

Reprints and permissions

About this article

Cite this article

König, R., Sielużycki, C. & Durka, P.J. Tiny Signals from the Human Brain: Acquisition and Processing of Biomagnetic Fields in Magnetoencephalography. J Low Temp Phys 146, 697–718 (2007). https://doi.org/10.1007/s10909-006-9290-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-006-9290-9

Keywords

Navigation