Skip to main content

Advertisement

Log in

Excito-Repellent Responses between Culex quinquefasciatus Permethrin Susceptible and Resistant Mosquitoes

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

The behavioral responses exhibited between four permethrin-resistant field-derived populations and a long-established, permethrin susceptible colony population of Culex quinquefasciatus mosquitoes was assessed for behavioral responses to permethrin in an excito-repellency (ER) test system. After a 30-min exposure to two different insecticide concentrations (200 and 500 mg/m2) in paired contact and noncontact test designs, the initial knockdown and escape (exit) responses were recorded followed by mortality after 24-h. All five test populations rapidly escaped from the chambers treated with permethrin regardless of background insecticide susceptibility status or chemical concentration. The greatest contact escape response was seen from the colonized population with 88 % of specimens escaping the chamber within 30-min. Contact irritancy was the predominant response compared to relatively weak noncontact spatial repellency in all test populations at both low and high concentrations. At the lower concentration, the contact escape responses did not appear influenced by background susceptibility status, whereas at the higher concentration the permethrin-resistant field populations exhibited significantly reduced avoidance behavior compared to the laboratory susceptible strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  • Achee NL, Sardelis MR, Dusfour I, Kamlesh R, Grieco JP (2009) Characterization of spatial repellent, contact irritant, and toxicant chemical actions of standard vector control compounds. J Am Mosq Control Assoc 25:156–167

    Article  CAS  PubMed  Google Scholar 

  • Banerjee K, Deshmukh PK, Ilkal MA, Dhanda V (1977) Experimental transmission of Japanese encephalitis virus through Anopheles tessellatus and Culex fatigans mosquitoes. Indian J Med Res 65:746–752

    CAS  PubMed  Google Scholar 

  • Bessaud M, Peyrefitte CN, Pastorino BAM, Tock F, Merle O, Colpart JJ, Dehecq JS, Girod R, Jaffar-Bandjee MC, Glass PJ, Parker M, Tolou HJ, Grandadam M (2006) Chikungunya virus strains, Reunion Island outbreak. Emerg Infect Dis 12:1604–1605

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown AWA (1958) Laboratory studies on the behaviouristic resistance of Anopheles albimanus in Panama. Bull Wld Hlth Org 19:1053–1056

    CAS  Google Scholar 

  • Busvine JR (1964) The significance of DDT-irritability tests on mosquitoes. Bull Wld Hlth Org 31:645–656

    CAS  Google Scholar 

  • Chandre F, Darriet F, Darder M, Cuany A, Doannio JMC, Pasteur N, Guillet P (1998) Pyrethroid resistance in Culex quinquefasciatus from West Africa. Med Vet Entomol 12:359–366

    Article  CAS  PubMed  Google Scholar 

  • Chandre F, Darriet F, Duchon S, Finot L. Manguin S, Carnevale P, Guillet P (2000) Modifications of pyrethoid effects associated with kdr mutation in Anopheles gambiae. Med Vet Entomol 14:81–88

  • Chareonviriyaphap T, Roberts DR, Andre RG, Harlan H, Manguin S, Bangs MJ (1997) Pesticide avoidance behavior in Anopheles albimanus, a malaria vector in the Americas. J Am Mosq Control Assoc 13:171–183

    CAS  PubMed  Google Scholar 

  • Chareonviriyaphap T, Aum-Aung B, Ratanatham S (1999) Current insecticide resistance patterns in mosquito vectors in Thailand. Southeast Asian J Trop Med Publ Hlth 30:184–194

    Google Scholar 

  • Chareonviriyaphap T, Prabaripai A, Sungvornyothin S (2002) An improved excito-repellency test chamber for mosquito behavioral tests. J Vector Ecol 27:250–252

    PubMed  Google Scholar 

  • Chareonviriyaphap T, Prabaripai A, Bangs MJ (2004) Excito-repellency of deltamethrin on the malaria vectors, Anopheles minimus, Anopheles dirus, Anopheles swadwongporni, and Anopheles maculatus, in Thailand. J Am Mosq Control Assoc 20:45–54

    CAS  PubMed  Google Scholar 

  • Chareonviriyaphap T, Bangs MJ, Suwonkerd W, Kongmee M, Corbel V, Ngoen-Klan R (2013) Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasites Vectors 6:280

    Article  PubMed  PubMed Central  Google Scholar 

  • Davidson G (1953) Experiments on the effect of residual insecticides in houses against Anopheles gambiae and Anopheles funestus. Bull Entomol Res 44:231–254

    Article  CAS  Google Scholar 

  • Dethier VG, Browne LB, Smith CW (1960) The designation of chemicals in terms of the responses they elicit from insects. J Econ Entomol 53:134–136

    Article  CAS  Google Scholar 

  • Ejiri H, Sato Y, Sawai R, Sasaki E, Matsumoto R, Ueda M, Higa Y, Tsuda Y, Omori S, Murata K, Yukawa M (2009) Prevalence of avian malaria parasite in mosquitoes collected at a zoological garden in Japan. Parasitol Res 105:629–633

    Article  PubMed  Google Scholar 

  • Elliott R (1964) Studies on the kinetic response of mosquitos to chemical. Bull Wld Hlth Org 31:657–667

    CAS  Google Scholar 

  • Gaaboub IA, Dawood MR (1974) Irritability status of adults of Culex pipiens L. Under selection pressure with lethal concentrations of DDT and malathion. Z Ang Ent 77:126–132

    Article  Google Scholar 

  • Grieco JP, Achee NL, Sardelis MR, Chauhan RK, Roberts DR (2005) A novel high-throughput screening system to evaluate the behavioral response of adult mosquitoes to chemicals. J Am Mosq Control Assoc 21:404–411

    Article  CAS  PubMed  Google Scholar 

  • Grieco JP, Achee NL, Chareonviriyaphap T, Suwonkerd W, Chauhan K, Sardelis MR, Roberts DR (2007) A new classification system for the actions of IRS chemicals traditionally used for malaria control. PLoS One 2(8):e716

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemingway J, Hawkes N, McCarroll L, Ranson H (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34:653–665

    Article  CAS  PubMed  Google Scholar 

  • Henderson CF, Tilton EW (1955) Tests with acaricides against the brown wheat mite. J Econ Entomol 48:157–161

    Article  CAS  Google Scholar 

  • Kanojia PC (2007) Ecological study on mosquito vectors of Japanese encephalitis virus in Bellary district, Karnataka. Indian J Med Res 126:152–157

    CAS  PubMed  Google Scholar 

  • Kilpatrick AM, Kramer LD, Campbell SR, Alleyne EO, Dobson AP, Daszak P (2005) West Nile virus risk assessment and the bridge vector paradigm. Emerg Infect Dis 11:425–429

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennedy JS (1947) The excitant and repellent effects on mosquitoes of sub-lethal contacts with DDT. Bull Entomol Res 37:593–607

    Article  CAS  PubMed  Google Scholar 

  • Kleinbaum DG (1995) Survival analysis. Springer, New York

    Google Scholar 

  • Kongmee M, Prabaripai A, Akratanakul P, Bangs MJ, Chareonviriyaphap T (2004) Behavioral responses of Aedes aegypti (Diptera: Culicidae) exposed to deltamethrin and possible implications for disease control. J Med Entomol 41:1055–1063

    Article  CAS  PubMed  Google Scholar 

  • Komalamisra N, Trongtokit Y, Palakul K, Prummongkol S, Samung Y, Apiwathnasorn C, Phanpoowong T, Asavanich A, Leemingsawa S (2006) Insecticide susceptibility of mosquitoes in tsunami affected areas. Southeast Asian J Trop Med Pub Health Vol. 37 supplement 3:118–122

  • Kwan JL, Kluh S, Madon MB, Reisen WK (2010) West Nile virus emergence and persistence in Los Angeles, California, 2003-2008. AmJTrop Med Hyg 83:400–412

    Article  Google Scholar 

  • LaPointe DA, Goff ML, Atkinso CT (2005) Comparative susceptibility of introduced forest-dwelling mosquitoes in Hawai’i to avain malaria, Plasmodium relictum. J Parasitol 91:843–849

    Article  PubMed  Google Scholar 

  • Lindahl JF, Ståhl K, Chirico J, Boqvist S, Thu HTV, Magnusson U (2013) Circulation of Japanese encephalitis virus in pigs and mosquito vectors within Can Tho City, Vietnam. PLoS Negl Trop Dis 7(4):e2153

    Article  PubMed  PubMed Central  Google Scholar 

  • Lockwood JA, Sparks TC, Story RN (1984) Evolution of insect resistance to insecticides: a reevaluation of the roles of physiology and behavior. Bulletin Entomol Soc America 30:41–51

    Article  Google Scholar 

  • Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748

    CAS  PubMed  Google Scholar 

  • Matthews G (2011) Integrated vector management: controlling vectors of malaria and other insect vector borne diseases. John Wiley & Sons, West Sussex

    Google Scholar 

  • Muenworn V, Akaratanakul P, Bangs MJ, Prabaripai A, Chareonviriyaphap T (2006) Insecticide-induced behavioral responses in two populations of Anopheles maculatus and Anopheles sawadwongporni, malaria vectors in Thailand. J Am Mosq Control Assoc 22:689–698

    Article  CAS  PubMed  Google Scholar 

  • Muirhead-Thomson RC (1951) Mosquito behaviour in relation to malaria transmission and control in the tropics. Edward Arnold & Co, London

    Google Scholar 

  • Nitatpattana N, Apiwathnasorn C, Barbazan P, Leemingsawat S, Yoksan S, Gonzalez JP (2005) First isolation of Japanese encephalitis from Culex quinquefasciatus in Thailand. Southeast Asian J Tropical Med Public Health 36:875–878

    Google Scholar 

  • Paeporn P, Suphapathom K, Boonyabancha S, Phan-Urai P (1996) Efficacy of aerosol insecticide product. Bull Dep Med Sci 38:37–43

    Google Scholar 

  • Paeporn P, Supaphathom K, Sathantriphop S, Chareonviriyaphap T, Yaicharoen R (2007) Behavioral responses of deltamethrin- and permethrin-resistant strains of Aedes aegypti when exposed to permethrin in an excito-repellency test system. Dengue Bull 31:153–159

    Google Scholar 

  • Rattanarithikul R, Harbach RE, Harrison BA, Panthusiri P, Jones JW, Coleman RE (2005) Illustrated keys to the mosquitoes of Thailand. II Genera Culex and Lutzia Southeast Asian J Trop Med Public Health 36(Suppl 2):1–97

  • Ree HI, Loong KP (1989) Irritability of Anopheles farauti, Anopheles maculatus, and Culex quinquefasciatus to permethrin. Japanese J Sanit Zool 40:47–51

    Google Scholar 

  • Roberts DR, Andre RG (1994) Insecticide resistance issues in vector-borne disease control. AmJTrop Med Hyg 50:21–34

    CAS  Google Scholar 

  • Roberts DR, Chareonviriyaphap T, Harlan HH, Hshieh P (1997) Methods for testing and analyzing excito-repellency responses of malaria vectors to insecticides. J Am Mosq Control Assoc 13:13–17

    CAS  PubMed  Google Scholar 

  • Roberts DR, Alecrim WD, Hshieh P, Grieco JP, Bangs MJ, Andre RG, Chareonviriyaphap T (2000) A probability model of vector behavior: effects of DDT repellency, irritancy and toxicity in malaria control. J Vector Ecol 25:48–61

    CAS  PubMed  Google Scholar 

  • Sang R, Kioko E, Lutomiah J, Warigia M, Ochieng C, O’Guinn M, Lee JS, Koka H, Godsey M, Hoel D, Hanafi H, Miller B, Schnabel D, Breiman RF, Richardson J (2010) Rift Valley fever virus epidemic in Kenya, 2006/2007: the entomologic investigations. AmJTrop Med Hyg 83:28–37

    Article  Google Scholar 

  • Sasa M (1976) Human filariasis: a global survey of epidemiology and control. University Park Press, Baltimore

    Google Scholar 

  • Sathantriphop S, Ketaval C, Parbaripai A, Bangs MJ, Visetson S, Akratanakul P, Chareonviriyaphap T (2006a) Susceptibility and avoidance behavior by Culex quinquefasciatus Say (Diptera: Culicidae) exposed to three classes of residual insecticides. J Vector Ecol 43:226–274

    Google Scholar 

  • Sathantriphop S, Paeporn P, Supaphathom K (2006b) Detection of insecticides resistance status in Culex quinquefasciatus and Aedes aegypti to four major groups of insecticides. Trop Biomed 23:97–101

    PubMed  Google Scholar 

  • Sathantriphop S, Kongmee M, Tainchum K, Suwansirisilp K, Sanguanpong U, Bangs MJ, Chareonviriyaphap T (2015) Comparison of field and laboratory-based tests for behavioral response of Aedes aegypti to repellents. J Econ Entomol. doi:10.1093/jee/tov243

    PubMed  Google Scholar 

  • Savage HM, Smith GC, Moore CG, Mitchell CJ, Townsend M, Marfin AA (1993) Entomologic investigations of an epidemic of St. Louis encephalitis in pine bluff, Arkansas, 1991. AmJTrop Med Hyg 49:38–45

    CAS  Google Scholar 

  • Sparks TC, Lockwood JA, Byford RL, Graves JB, Leonard BR (1989) The role of behavior in insecticide resistance. Pestic Sci 26:383–399

    Article  CAS  Google Scholar 

  • Tanasinchayakul S, Polsomboon S, Prabaripai A, Chareonviriyaphap T (2006) An automated, field-compatible device for excito-repellency assays in mosquitoes. J Vector Ecol 31:210–212

    Article  PubMed  Google Scholar 

  • Thanispong K, Sathantriphop S, Chareonviriyaphap T (2008) Insecticide resistance of Aedes aegypti and Culex quinquefasciatus in Thailand. J Pestic Sci 33:351–356

    Article  CAS  Google Scholar 

  • Thanispong K, Achee NL, Bangs MJ, Grieco JP, Suwonkerd W, Prabaripai A, Chareonviriyaphap T (2009) Irritancy and repellency behavioral responses of three strains of Aedes aegypti exposed to DDT and α-cypermethrin. J Med Entomol 46:1407–1414

    Article  CAS  PubMed  Google Scholar 

  • Thanispong K, Achee NL, Grieco JP, Bangs MJ, Suwonkerd W, Prabaripai CKR, Chareonviriyaphap T (2010) A high throughput screening system for determining the three actions of insecticides against Aedes aegypti (Diptera: Culicidae) populations in Thailand. J Med Entomol 47:833–841

    Article  CAS  PubMed  Google Scholar 

  • Thao NTK, Vien NT, Mai TT, Xuan NTN (1974) Japanese encephalitis vectors: isolation of virus from culicine mosquitoes in the Saigon area. Southeast Asian J Tropical Med Public Health 5:408–412

    Google Scholar 

  • Turell MJ, Dohm DJ, Sardelis MR, O’Guinn ML, Andreadis TG, Blow JA (2005) An update on the potential of north American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol 42:57–62

    Article  PubMed  Google Scholar 

  • Turell MJ, Linthicum KJ, Patrican LA, Davies FG, Kairo A, Bailey CL (2008) Vector competence of selected African mosquito (Diptera: Culicidae) species for Rift Valley fever virus. J Med Entomol 45:102–108

    Article  PubMed  Google Scholar 

  • Woodworth BL, Atkinson CT, LaPointe DA, Hart PJ, Spiegel CS, Tweed EJ, Henneman C, LeBrun J, Denette T, DeMots R, Kozar KL, Triglia D, Lease D, Gregor A, Smith T, Duffy D (2005) Host population persistence in the face of introduced vector-borne diseases: Hawaii amakihi and avian malaria. Proc Natl Acad Sci U S A 102:1531–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagman JM, Achee NL, Grieco JP (2015) Insensitivity to the spatial repellent action of transfluthrin in Aedes aegypti: a heritable trait associated with decreased insecticide susceptibility. PLoS Negl Trop Dis. doi:10.1371/journal.pntd.0003726

    PubMed  PubMed Central  Google Scholar 

  • World Health Organization (WHO) (1992) Vector resistance to pesticides: fifteenth report of the WHO expert committee on vector biology and control. WHO, Geneva. http://apps.who.int/iris/bitstream/10665/37432/1/WHO_TRS_818.pdf. Accessed 20 January 2013

  • World Health Organization (WHO) (2006) Guidelines for testing mosquito adulticides for indoor residual spraying and treatment of mosquito nets. WHO, Geneva. http://apps.who.int/iris/bitstream/10665/69296/1/WHO_CDS_NTD_WHOPES_GCDPP_2006.3_eng.pdf. Accessed 26 January 2013

  • World Health Organization (WHO) (2007) WHO recommended insecticide products for treatment of mosquito nets for malaria vector control. WHO, Geneva, http://www.who.int/whopes/Insecticides_ITN_Malaria_ok3.pdf. Accessed 20 March 2013

  • World Health Organization (WHO) (2012) Discriminating concentrations of insecticides for adult mosquitoes (one hour exposure-WHO/CDS/CPC/MAL/98.12 and WHO Technical Report Series 818). WHO, Geneva, http://www.who.int/whopes/resistance/en/ Diagnostic_ concentrations_june_2012.pdf. Accessed 18 December 2012

  • World Health Organization (WHO) (2013) Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. WHO, Geneva, http://www.who.int/malaria/publications/atoz/9789241505154/en/. Accessed 25 May 2013

  • World Health Organization (WHO) (2014) WHO recommended insecticide products for treatment of mosquito nets for malaria vector control. WHO, Geneva, http://www.who.int/whopes/Insecticides_ITN_Malaria_Nov2014.pdf. Accessed 23 January 2015

  • Yang T, Liu N (2013) Permethrin resistance profiles in a field population of mosquitoes, Culex quinquefasciatus (Diptera: Culicidae). J Med Entomol 50:585–593

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the following institutions for financial support for this research: the Center for Advanced Studies for Agriculture and Food, Institute for Advanced Studies, Kasetsart University under the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, Ministry of Education, Thailand and The Thailand Research Fund, Senior Research Scholar Program (RTA5580002) and International Research Network (IRN58W0003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theeraphap Chareonviriyaphap.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boonyuan, W., Bangs, M.J., Grieco, J.P. et al. Excito-Repellent Responses between Culex quinquefasciatus Permethrin Susceptible and Resistant Mosquitoes. J Insect Behav 29, 415–431 (2016). https://doi.org/10.1007/s10905-016-9570-4

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-016-9570-4

Keywords

Navigation