Skip to main content
Log in

Response Surface Optimisation of an Oxalate–Phosphate–Amine Metal–Organic Framework (OPA-MOF) of Iron and Urea

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Metal–organic framework (MOF) materials are well known for various application fields, such as engineering, and medical sciences. Here, the synthesis, and synthesis-optimisation of a novel oxalate-phosphate-amine MOF (OPA-MOF) for innovative agricultural applications is described, with urea as a structure-directing agent in a hydrothermal synthesis. Product properties conducive to proposed applications included yield, purity, elemental content (N, P, C), and oxalate-solubility, as important driving forces for functionality, which is based on the biomineralisation processes for the material’s decomposition in soil. A four-factors/two levels plus one (42+1) factorial design included replicated zero-point and factors of time, temperature, urea input rate and dilution factor. 19 experimental runs results provided data for a Response Surface Method optimisation to determine factors resulting in a desired product at highest efficiency. The saddle-ridge shaped response surface highlighted system robustness for two factors (time/urea-input), and sensitivity for temperature and dilution factor. Optimal factor combinations initially appeared counterintuitive compared to expected results from factorial design outcomes, however confirmatory experiments validate model predictions. Consequently, the optimisation process was strongly justified for accurate determination of the optimal OPA-MOF synthesis conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.J. Anderson, P.J. Whitcomb, DOE simplified, practical tools for effective experimentation, Third Edition. 3 edn, Productivity Press (2015)

  2. S.N. Deming, Optimization. J. Res. Nat. Bur. Stand. 90(6), 479–483 (1985). doi:10.6028/jres.090.045

    Article  CAS  Google Scholar 

  3. G.E.P. Box, K.B. Wilson, On the experimental attainment of optimum conditions. J. R. Stat. Soc. Ser. B 13(1), 1–45 (1951)

    Google Scholar 

  4. T. Horibe, K. Watanabe, Crack identification of plates using genetic algorithm. JSME Int. J. Ser. Solid Mechanics Mater. Eng. 49 (3):403–410 (2006). doi:10.1299/jsmea.49.403

    Article  Google Scholar 

  5. Y.S. Ren, J. Li, X.X. Duan, Application of the central composite design and response surface methodology to remove arsenic from industrial phosphorus by oxidation. Can. J. Chem. Eng. 89(3), 491–498 (2011). doi:10.1002/cjce.20423

    Article  CAS  Google Scholar 

  6. K.M. Lee, S.B. Hamid, Simple response surface methodology: investigation on advance photocatalytic oxidation of 4-Chlorophenoxyacetic acid using UV-Active ZnO photocatalyst. Materials 8(1), 339–354 (2015). doi:10.3390/ma8010339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. J.H. Liu, Y.Y. Zhang, Y.M. Xia, F. Su, Optimization of immobilization conditions of candida antarctica lipase based on response surface methodology. Chem. Biochem. Eng. Quart. 24 (2):203–209(2010)

    CAS  Google Scholar 

  8. R.D.C. Soltani, A. Rezaee, A.R. Khataee, H. Godini, Optimisation of the operational parameters during a biological nitrification process using response surface methodology. Can. J. Chem. Eng. 92(1), 13–22 (2014). doi:10.1002/cjce.21785

    Article  CAS  Google Scholar 

  9. H. Shafaghat, G.D. Najafpour, P.S. Rezaei, M. Sharifzadeh, Optimal growth of Saccharomyces cerevisiae (PTCC 24860) on pretreated molasses for the ethanol production: the application of the response surface methodology. Chem. Ind. Chem. Eng. Quart. 16 (2):199–206 (2010). doi:10.2298/ciceq100201029s

    Article  CAS  Google Scholar 

  10. J.K. Sabet, C. Ghotbi, F. Dorkoosh, Application of response surface methodology for optimization of paracetamol particles formation by RESS method. J. Nanomater. (2012). doi:10.1155/2012/340379

    Article  Google Scholar 

  11. M.Z. Karim, Z.Z. Chowdhury, S.B. Hamid, M.E. Ali, Statistical optimization for acid hydrolysis of microcrystalline cellulose and its physiochemical characterization by using metal ion catalyst. Materials 7(10):6982–6999 (2014). doi:10.3390/ma7106982

    Article  PubMed  PubMed Central  Google Scholar 

  12. S.E. Yalcinkaya, N. Yildiz, M. Sacak, A. Calimli, Preparation of polystyrene/montmorillonite nanocomposites: optimization by response surface methodology (RSM). Turk. J. Chem. 34(4), 581–592 (2010). doi:10.3906/kim-0908-235

    Article  CAS  Google Scholar 

  13. M.J. Anderson, P.J. Whitcomb, (2004) Screening process factors in the presence of interaction. Paper presented at the Annual Quality Congress, Toronto

    Google Scholar 

  14. M. Shekarriz, R. Khadivi, S. Taghipoor, M. Eslamian, Systematic synthesis of high surface area silica nanoparticles in the sol-gel condition by using the central composite design (CCD) method. Can. J. Chem. Eng. 92(5), 828–834 (2014). doi:10.1002/cjce.21921

    Article  CAS  Google Scholar 

  15. N. Mizutani, T. Iwasaki, S. Watano, Response surface methodology study on magnetite nanoparticle formation under hydrothermal conditions. Nanomater. Nanotechnol. 5:13 (2015). doi:10.5772/60649

    Article  CAS  Google Scholar 

  16. A. Choudhury, S. Natarajan, CNR Rao, Hybrid open-framework iron phosphate-oxalates demonstrating a dual role of the oxalate unit. Chem. A Eur. J. 6(7), 1168–1175 (2000)

    Article  CAS  Google Scholar 

  17. N. Rajic, D. Stojakovic, D. Hanzel, N. Zabukovec Logar, V. Kaucic, Preparation and characterization of iron(III) phosphate–oxalate using 1,2-diaminopropane as the structure-directing agent. Microporous Mesoporous Mater. 55 (3):313(2002)

    Article  CAS  Google Scholar 

  18. Y.C. Jiang, S.L. Wang, K.H. Lii, N. Nguyen, A. Ducouret, Synthesis, crystal structure, magnetic susceptibility, and Mössbauer spectroscopy of a mixed-valence organic-inorganic hybrid compound: (H3DETA)[Fe3(C2O4) 2(HPO4)2(PO4)] (DETA = diethylenetriamine). Chem. Mater. 15(8), 1633–1638 (2003). doi:10.1021/cm021701t

    Article  CAS  Google Scholar 

  19. H.P. Jia, W. Li, Z.F. Ju, J. Zhang, Synthesis, crystal structure and magnetic properties of an oxalate-bridged diiron(III) complex {[FeIII(salapn)]2(C2O4)}. J. Mol. Struct. 833(1–3), 49–52 (2007)

    Article  CAS  Google Scholar 

  20. S. Quaresma, V. André, M. Martins, M.T. Duarte, Zinc-formate metal-organic frameworks: Watch out for reactive solvents. J. Chem. Crystallogr. 45(4), 178–188 (2015). doi:10.1007/s10870-015-0578-y

    Article  CAS  Google Scholar 

  21. C.N.R. Rao, A. Choudhury, S. Natarajan, S. Neeraj, R. Vaidhyanathan, Synthons and design in metal phosphates and oxalates with open architectures. Acta Chrystallograph. Sect. B 57:1–12 (2001)

    Article  CAS  Google Scholar 

  22. S. Natarajan, S. Mandal Open-framework structures of transition-metal compounds. Angewandte Chem. Int. Ed. 47 (26):4798–4828 (2008)

    Article  CAS  Google Scholar 

  23. C.N.R. Rao, A. Choudhury, Understanding the building-up process of three dimensional open-framework metal phosphates: acid degradation of the 3D structures to lower dimensional structures. Chem. Commun. 3:366–367 (2003). doi:10.1039/b210037c

    Article  CAS  Google Scholar 

  24. C. Janiak, J.K. Vieth, MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 34(11), 2366–2388 (2010)

    Article  CAS  Google Scholar 

  25. G. Ferey, Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37(1), 191–214 (2008). doi:10.1039/b618320b

    Article  CAS  PubMed  Google Scholar 

  26. N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112(2), 933–969 (2012). doi:10.1021/cr200304e

    Article  CAS  PubMed  Google Scholar 

  27. X. Yang, J. Li, Y. Hou, S. Shi, Y. Shan, K2Fe(C2O4)(HPO4)(OH2) H2O: a layered oxalatophosphate hybrid material. Inorg. Chim. Acta 361(5), 1510–1514 (2008)

    Article  CAS  Google Scholar 

  28. Z.A.D. Lethbridge, S.K. Tiwary, A. Harrison, P. Lightfoot, Synthesis, structural relationships and magnetic properties of new amine-templated manganese(II) phosphate oxalate framework materials. J. Chem. Soc. Dalton Trans. 12:1904–1910 (2001)

    Article  CAS  Google Scholar 

  29. Z.A.D. Lethbridge, M.J. Smith, S.K. Tiwary, A. Harrison, P. Lighffoot, Synthesis of hybrid framework materials under “dry” hydrothermal conditions: crystal structure and magnetic properties of Mn2(H 2PO4)2(C2O4). Inorg. Chem. 43(1), 11–13 (2004)

    Article  CAS  PubMed  Google Scholar 

  30. K. Mengel, E.A. Kirkby, Principles of plant nutrition. 5th edn, Kluwer Academic Publishers, Dordrecht (2001)

    Book  Google Scholar 

  31. D. Chen, H. Suter, A. Islam, R. Edis, J. Freney, C.N. Walker, Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture: a review of enhanced efficiency fertilisers. Soil Res. 46:289–301 (2008)

    Article  CAS  Google Scholar 

  32. P.M. Chalk, E.T. Craswell, J.C. Polidoro, D. Chen, Fate and efficiency of 15 N-labelled slow- and controlled-release fertilizers. Nutr. Cycling Agroecosyst. (2015). doi:10.1007/s10705-015-9697-2

    Article  Google Scholar 

  33. E. Verrecchia, O. Braissant, G. Cailleau, The oxalate-carbonate-pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria. In: G.M. Gadd (ed) Fungi in biochemical Cycles. pp 289–310 (2006)

  34. G. Cailleau, O. Braissant, E.P. Verrecchia, Turning sunlight into stone: The oxalate-carbonate pathway in a tropical tree ecosystem. Biogeosciences 8(7), 1755–1767 (2011)

    Article  CAS  Google Scholar 

  35. D. Bravo, G. Martin, M.M. David, G. Cailleau, E. Verrecchia, P. Junier, Identification of active oxalotrophic bacteria by Bromodeoxyuridine DNA labeling in a microcosm soil experiments. FEMS Microbiol. Lett. 348(2), 103–111 (2013)

    Article  CAS  PubMed  Google Scholar 

  36. O. Braissant, G. Cailleau, M. Aragno, E.P. Verrecchia, Biologically induced mineralization in the tree Milicea excelsa (Moraceae): its causes and consequences to the environment. Geobiology 2, 59–66 (2004)

    Article  CAS  Google Scholar 

  37. N. Sahin, Oxalotrophic bacteria. Res. Microbiol. 154(6), 399–407 (2003)

    Article  CAS  PubMed  Google Scholar 

  38. G. Martin, M. Guggiari, D. Bravo, J. Zopfi, G. Cailleau, M. Aragno, D. Job, E. Verrecchia, P. Junier, Fungi, bacteria and soil pH: The oxalate-carbonate pathway as a model for metabolic interaction. Environ. Microbiol. 14(11), 2960–2970 (2012)

    Article  CAS  PubMed  Google Scholar 

  39. D. Bravo, O. Braissant, G. Cailleau, E. Verrecchia, P. Junier, Isolation and characterization of oxalotrophic bacteria from tropical soils. Arch. Microbiol. 197(1), 65–77 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. D.L. Jones, P.R. Darrah, Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166(2), 247–257 (1994)

    Article  CAS  Google Scholar 

  41. E.M. Bennett, S.R. Carpenter, N.F. Caraco, Human impact on erodable phosphorus and eutrophication: a global perspective: increasing accumulation of phosphorus in soil threatens rivers, lakes, and coastal oceans with eutrophication. Bioscience 51(3), 227–234 (2001). doi:10.1641/0006-3568(2001)051[0227:hioepa]2.0.co;2

    Article  Google Scholar 

  42. E.P. Hodgkin, B.H. Hamilton, Fertilizers and eutrophication in southwestern Australia: setting the scene. Fertilizer Res. 36(2):95–103 (1993). doi:10.1007/BF00747579

    Article  Google Scholar 

  43. M. Anstoetz Synthesis and characterisation of a hybrid iron phosphate oxalate (Fe3P4O13(OH)3(C2O4)1.2(C3N2H12)1.2) for novel fertiliser applications environmental science and management, vol BEnvSc(Hons). Southern Cross University, Lismore (2010)

    Google Scholar 

  44. M. Anstoetz, M. Clark, L. Yee, Resolving topography of an electron beam-sensitive oxalate-phosphate-amine metal–organic framework (OPA-MOF). J. Mater. Sci. 51(3), 1562–1571 (2016). doi:10.1007/s10853-015-9478-y

    Article  CAS  Google Scholar 

  45. Stat-Ease (2011) Design-Expert 8. Design-Expert 8.0.7.1 edn. Stat-Ease Inc., 2021 East Hennepin Ave, Minneapolis MN 55413

  46. Huber PJ (1992) Issues in Computational Data Analysis. In: Dodge Y, Whittaker J (eds) Computational Statistics. Physica-Verlag HD, pp 3–13. doi:10.1007/978-3-642-48678-4_1

  47. M.J. Anderson, P.J. Whitcomb, RSM simplified, optimizing processs using response suface methods for design of experiments. CRC Press, Boca Raton (2005)

    Google Scholar 

  48. M. Anstoetz, N. Sharma, M. Clark, L.H. Yee, Characterization of an oxalate-phosphate-amine metal–organic framework (OPA-MOF) exhibiting properties suited for innovative applications in agriculture. J. Mater. Sci. 51(20), 9239–9252 (2016). doi:10.1007/s10853-016-0171-6

    Article  CAS  Google Scholar 

  49. G. Férey, Microporous solids: from organically templated inorganic skeletons to hybrid frameworks...ecumenism in chemistry. Chem. Mater. 13(10), 3084–3098 (2001). doi:10.1021/cm011070n

    Article  CAS  Google Scholar 

  50. P. Knauth, J.E. Schoonmann, Nanostructured Materials Selected Synthesis Methods, Properties and Applications. (Kluwer Academic Publishers, Hingham, MA, 2002)

    Google Scholar 

  51. K.H. Lii, Y.F. Huang, V. Zima, C.Y. Huang, H.M. Lin, Y.C. Jiang, F.L. Liao, S.L. Wang, Syntheses and structures of organically templated iron phosphates. Chem. Mater. 10(10), 2599–2609 (1998)

    Article  CAS  Google Scholar 

  52. S. Natarajan, S. Neeraj, C.N.R. Rao, Amine phosphates as intermediates in the formation of open-framework structures. Angewandte Chem. Int. Ed. 38(23), 3480–3483 (1999)

    Article  Google Scholar 

  53. C.N.R. Rao, Basic building units, self-assembly and crystallization in the formation of complex inorganic open architectures. J. Chem. Sci. 113(5–6), 363–374 (2001). doi:10.1007/BF02708777

    Article  CAS  Google Scholar 

  54. Barthelmy D (1997–2009) webmineral. http://www.webmineral.com. Accessed 2 March, 2010 2010

  55. G.C. Derringer, A balancing act—optimizing a product’s properties. Qual. Prog. 27(6), 51–58 (1994)

    Google Scholar 

  56. Z.A.D. Lethbridge, G.J. Clarkson, S.S. Turner, R.I. Walton, Polymorphism and variable structural dimensionality in the iron(III) phosphate oxalate system: a new polymorph of 3D [Fe2(HPO4)2(C2O4)(H2O)2][middle dot]2H2O and the layered material [Fe2(HPO4)2(C2O4)(H2O)2]. Dalton Trans. 42, 9176–9182 (2009)

    Article  CAS  Google Scholar 

  57. D. Bas, I.H. Boyaci, Modeling and optimization I: usability of response surface methodology. J. Food Eng. 78(3), 836–845 (2007). doi:10.1016/j.jfoodeng.2005.11.024

    Article  CAS  Google Scholar 

  58. J.V. Smith, W.L. Brown, Feldspar minerals: Volume 1 crystal structures, physical, chemical, and microtextural properties. Springer, Berlin (2012)

    Google Scholar 

  59. S. Mukherjee (2011) Applied mineralogy—applications in industry and environment. 1 edn. Springer, Dodrecht. doi:10.1007/978-94-007-1162-4

    Book  Google Scholar 

  60. C.P. Muzzillo, C.E. Campbell, T.J. Anderson, Cu–Ga–In thermodynamics: experimental study, modeling, and implications for photovoltaics. J. Mater. Sci. 51(7), 3362–3379 (2015). doi:10.1007/s10853-015-9651-3

    Article  CAS  Google Scholar 

  61. Z.A.D. Lethbridge, P. Lightfoot, Mixed inorganic-organic anion frameworks: synthesis and crystal structure of Fe4(PO4)2(C2O4)(H2O)2. J. Solid State Chem. 143(1), 58–61 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to that the staff and students at Southern Cross University for the support and assistance in data and reference material accession, and in assistance with software use. Much of this study was funded by the Australian Grains Research Development Council (GRDC) Grant - Project No 51426, and partially supported through the Australian Synchrotron AS 2012/1 Application P4430. Southern Cross University provided Manuela Anstoetz an APA (Australian Postgraduate Award) to fund her PhD. We thank Professor Per Zetterlund and Dr Eh Hau Pan of the Centre for Advanced Macromolecular Design, University of New South Wales, for discussions and instrument access relating to FTIR results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm W. Clark.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2626 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anstoetz, M., Clark, M.W. & Yee, L.H. Response Surface Optimisation of an Oxalate–Phosphate–Amine Metal–Organic Framework (OPA-MOF) of Iron and Urea. J Inorg Organomet Polym 27, 996–1013 (2017). https://doi.org/10.1007/s10904-017-0547-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0547-3

Keywords

Navigation