Skip to main content
Log in

Preparation and Some Physical Properties of Zn1−xCrxO

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A series of Zn1−xCrxO with different Cr concentrations were prepared by solid state reaction. The powders were characterized by X-ray diffractometer and the results exhibited that Cr-doped ZnO consisted of two phases; the major phase was zensite wurtzite structure and the second phase was zinc chromate ZnCr2O4 spinel structure. The results of the Rietveld refinement indicated that the ZnO lattice is further deformed upon Cr substitution. The crystallite size was found to decrease with increasing the Cr substitution, and this may be due to the difference in the ionic radius between Zn2+, and Cr3+, in addition to the segregation of the second phase inhabit the growth mechanism. The calculated energy band gap decreased as Cr concentrations increased. The dielectric properties of Cr doped ZnO were studied in the frequency range 0.1–5 MHz and at different temperatures (30–150 °C). The dielectric constant (ε′) and loss factor (tan δ) increased with increasing Cr doping due to the increase of the number of charge carriers and interfacial polarization effects. The conductivity of the samples increases with increasing both of composition parameter x and temperature, and showing semiconducting behavior. The magnetization and the magnetic susceptibility were found to increase with the increase in Cr doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Tanaka, Y. Higo, Phys. Rev. Lett. 87(2), 26602–26606 (2001)

    Article  Google Scholar 

  2. S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler et al., J. Appl. Phys. 93(1), 1–13 (2003)

    Article  CAS  Google Scholar 

  3. Y.Z. Wang, H. Liu, Z.Q. Li, X.X. Zhang et al., Appl. Phys. Lett. 89(4), 042511–042514 (2006)

    Article  Google Scholar 

  4. J.H. Lim, C.K. Kong, K.K. Kim, I.K. Park et al., Adv. Mater. 18(20), 2720–2724 (2006)

    Article  CAS  Google Scholar 

  5. J.K. Furdyna, J. Appl. Phys. 64(4), R29–R64 (1998)

    Article  Google Scholar 

  6. A. Ohtomo, K. Tamura, M. Kawasaki et al., Appl. Phys. Lett. 77(14), 2204–2206 (2000)

    Article  CAS  Google Scholar 

  7. Y.Z. Yoo, T. Fukumura, Z. Jin et al., J. Appl. Phys. 90(8), 4246–4250 (2001)

    Article  CAS  Google Scholar 

  8. T. Brock, M. Groteklaes, P. Mischke, European Coating Hand book (Vincentz Verlag, Hannover, 2000)

    Google Scholar 

  9. J. Uhm, M. Shin, Z. Jiang, J. Chung, Appl. Catal. B 22(4), 293–303 (1999)

    Article  CAS  Google Scholar 

  10. M. Bkjker, J. Bastiaens, E. Draaisma, L. de Jong, E. Sourty et al., Tribol. Int 32(4-6), 227–233 (2003)

    Article  Google Scholar 

  11. H. Ohno, Science 281(5379), 951–956 (1998)

    Article  CAS  Google Scholar 

  12. K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys. 39(6B), L555–L558 (2000)

    Article  CAS  Google Scholar 

  13. H. Katayama-Yoshida, K. Sato, Phys. B 327(2–4), 337–343 (2003)

    Article  CAS  Google Scholar 

  14. S.A. Wolf, D.D. Awschalom, R.A. Buhrman et al., Science 294(5546), 1488–1495 (2001)

    Article  CAS  Google Scholar 

  15. T. Dietl, Semicond. Sci. Technol. 17(4), 377–392 (2002)

    Article  CAS  Google Scholar 

  16. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287(5455), 1019–1022 (2000)

    Article  CAS  Google Scholar 

  17. A.A.Ward, Dielectric and mechanical properties of filled rubbers in dependence on stress amplitude and temperature, PhD thesis, Cairo University, Giza, Egypt, 2003

  18. S. A Speakman, PANalytical X’Pert High Score Plus v3.0

  19. D.Paul Josephand C. Venkateswaran, Journal of Atomic, Molecular, and Optical Physics, Article ID 270540, pp. 7 (2011)

  20. P. Zhang, T.L. Phan, S.C. Yu, J Supercond Nov Magn 26, 1001–1004 (2013)

    Article  CAS  Google Scholar 

  21. J. Rodrquez-Casrajal, FULLPROF, Laboratory L˜eon Brillouin (CEA-CNRS), France, 2009)

    Google Scholar 

  22. C. Liu, Y.Y. Fail, M. Lm, H.L. Cong, H.M. Cheng, M.S. Dresselhaus, Science 286, 1127 (1999)

    Article  CAS  Google Scholar 

  23. A. Lan, A.Mukasyan, J. Phys. Chem. B. 109, 16011 (2005)

    Article  CAS  Google Scholar 

  24. P.X. Gao, C.S. Lao, Y. Ding, Z.L. Wang, Adv. Funct. Mater. 16, 53 (2006)

    Article  CAS  Google Scholar 

  25. X.Y. Kong, Y. Ding, R. Yang, Z.L. Wang, Science 303, 1348 (2004)

    Article  CAS  Google Scholar 

  26. Pushpendra Kumar, Jai Singh, Vyom Parashara, Kedar Singh et al., Cryst. Eng. Comm. 14, 1653 (2012)

    Article  CAS  Google Scholar 

  27. H. Schulz, K.H. Thiemann, Solid State Commun. 23, 815 (1977)

    Article  CAS  Google Scholar 

  28. P.D. Fochs, Proc. Phys. Soc. Sect. B 69(1), 70 (1955)

    Article  Google Scholar 

  29. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

  30. C.G. Koops, Phys. Rev. 83(1), 121 (1951)

    Article  CAS  Google Scholar 

  31. K.K. Bharathi, G. Markandeyulu, J. Appl. Phys. 103, 07E309-1 (2008)

    Google Scholar 

  32. A. Dutta, T.P. Sinha, Phys. Rev.B 76, 155113 (2007)

    Article  Google Scholar 

  33. Hsiao Yu-Jen, Chang Yee-Shin, Fang Te-Hua, Chai Yin-Lai et al., J. Phys. D Appl. Phys. 40, 863 (2007)

    Article  Google Scholar 

  34. R.K. Dwivedi, D. Kumar, O. Parkash, J. Mater. Sci. 36, 3649 (2001)

    Article  CAS  Google Scholar 

  35. M.A. Nassar, A.A. Ward, R.A. Baseer, KGK-Kautsch. Gummi Kunstst. 66(9), 39–46 (2013)

    CAS  Google Scholar 

  36. J.R. Macdonald, E. Barsoukov, Impedence spectroscopy: theory, experiment, and application, 2nd edn. (Wiley-Intersience, New Jersy, 2005)

    Google Scholar 

  37. A. Molak, M. Paluch, S. Pawlus, J. Klimontko et al., J. Phys. D Appl. Phys. 38, 1450 (2005)

    Article  CAS  Google Scholar 

  38. C. Bharti, T.P. Sinha, Solid. State. Sci 12, 498 (2010)

    Article  CAS  Google Scholar 

  39. D.R. Patil, L.A. Patil, Talanta 77, 1409–1414 (2009)

    Article  CAS  Google Scholar 

  40. Shubra Singh, E. Senthil Kumar, M.S. Ramachandra Rao, Scripta Mater. 58, 866–869 (2008)

    Article  CAS  Google Scholar 

  41. V. Zorica, Marinkovic, V. Tatjana, Sreckovic, I. Petrovic-Pelevic, M.M. Ristic, Chem. Sustain. Dev. 1(2), 113–118 (2002)

    Google Scholar 

  42. S.R. Naidu, A.K. Banerjee, N.C. Ganguli, S.P. Sen, J. Res. Inst. Catal (Hokkaido Univ). 21(3), 172–186 (1973)

    CAS  Google Scholar 

  43. T. Irie, T. Shiraishi, Nippon Kagaku Zasshi 80, 107–131 (1959)

    Article  CAS  Google Scholar 

  44. Jiang Sheng-lin, Zhang Hai-bo, Xie Tian-tian, Fan Mao-yan et al., Trans. Nonferrous Met. Soc. China 17, 794–797 (2007)

    Google Scholar 

  45. Yanqiu Huang, Meidong Liu, Zhen Li, Yike Zeng et al., Mater. Sci. Eng. B 97, 111–116 (2003)

    Article  Google Scholar 

  46. F.A. Kroger, H. Vink, Solid State Physics, edited by F (Seitz and D Turnbull (academic Press, New York, 1956)

    Google Scholar 

  47. S.A. Pianaro, E.C. Pereira, L.O.S. Bulhoes, E. Longo, J.A. Varela, J. Mater. Sci. 30, 133–141 (1995)

    Article  CAS  Google Scholar 

  48. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett. 7(3), 766–772 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Gad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gad, S.A., Moustafa, A.M. & Ward, A.A. Preparation and Some Physical Properties of Zn1−xCrxO. J Inorg Organomet Polym 25, 1077–1087 (2015). https://doi.org/10.1007/s10904-015-0214-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-015-0214-5

Keywords

Navigation