Skip to main content
Log in

Synthesis and Photovoltaic Properties of 2D π-Conjugated Polymers Based on Alkylbenzothiophene Substituted Benzodithiophene Donor Unit with Titanium Sub-Oxide (TiOX) as an Interlayer in the Bulk Heterojunction Device Structure

Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A newbenzo[1,2-b:4,5-b]dithiophene (BDT) derivative with conjugated side chain substituent, 5-ethylhexylbenzothiophene group, was synthesized as donor unit (D) and copolymerized with two acceptor units (A), 3,3′-diethylhexyl-3,4-propylenedioxythienyl-bisbenzothiadiazole and 3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DPP), respectively, using Stille coupling reaction to afford two new copolymers, P1 and P2. Low bandgaps were successfully accomplished for P1 (1.64 eV) and P2 (1.37 eV) and were attributed to the strong intramolecular charge transfer within the D–A alternating structure. Both P1 and P2 exhibited highest occupied molecular orbital (HOMO) energy levels that were deeper due to the conjugated benzothiophene substituent. The photovoltaic performances of the synthesized polymers were investigated using the device configuration ITO/PEDOT:PSS/polymer:PC71BM/(with or without)TiOx/Al. We employed titanium sub-oxide (TiOx) as an effective interlayer in the bulk heterojunction device structure. The subsequent photovoltaic performances showed high open-circuitvoltages (Voc) ranging from 0.78 to 0.81 V, whereas the power conversion efficiencies (PCEs) depended strongly on the blend morphologies. The polymer solar cell devices based on the blend of P2 and PC71BM gave the best photovoltaic performance among the series, with a Voc of 0.78 V, short-circuit current density (Jsc) of 5.69 mA/cm2, fill factor (FF) of 58.09 % and PCE of 2.60 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. H. Pan, Y. Li, Y. Wu, P. Liu, B.S. Ong, S. Zhu, G. Xu, Chem. Mater. 18, 3237–3241 (2006)

    Article  CAS  Google Scholar 

  2. Y. Liang, D. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ryu, L. Yu, J. Am. Chem. Soc. 131, 7792–7799 (2009)

    Article  CAS  Google Scholar 

  3. P. Sista, M.P. Bhatt, A.R. McCary, H. Nguyen, J. Hao, M.C. Beiwer, M.C. Stefan, J. Polym. Sci. A 49, 2292–2302 (2011)

    Article  CAS  Google Scholar 

  4. P. Sista, J. Hao, S. Elkassih, E.E. Sheina, M.C. Beiwer, B.G. Janesko, M.C. Stefan, J. Polym. Sci. A 49, 4172–4179 (2011)

    Article  CAS  Google Scholar 

  5. Y. He, Y. Zhou, G. Zhao, J. Min, X. Guo, B. Zhang, M. Zhang, J. Zhang, Y. Li, F. Zhang, O.J. Inganaes, J. Polym. Sci. A 48, 1822–1829 (2010)

    Article  CAS  Google Scholar 

  6. T.-Y. Chu, J.P. Lu, S. Beapuré, Y. Zhang, J.-R. Pouliot, J. Zhou, A. Najari, M. Leclerc, Y. Tao, Adv. Funct. Mater. 22, 2345–2351 (2012)

    Article  CAS  Google Scholar 

  7. C. Piliego, T.W. Holcombe, J.D. Douglas, C.H. Woo, P.M. Beaujuge, J.M. Frechet, J. Am. Chem. Soc. 132, 7595–7597 (2010)

    Article  CAS  Google Scholar 

  8. H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Nat. Photonics 3, 649–653 (2009)

    Article  CAS  Google Scholar 

  9. N. Chakravarthi, K. Kranthiraja, M. Song, K. Gunasekar, P. Jeong, S.-J. Moon, I.-N. Kang, J.W. Lee, S.-H. Jin, Sol. Energy Mater. Sol. Cells 122, 136–145 (2014)

    Article  CAS  Google Scholar 

  10. L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li, J. Hou, Angew. Chem. Int. Ed. 50, 9697–9702 (2011)

    Article  CAS  Google Scholar 

  11. S. Zhang, L. Ye, W. Zhao, D. Liu, H. Yao, J. Hou, Macromolecules 47, 4653–4659 (2014)

    Article  CAS  Google Scholar 

  12. K. Lee, J.Y. Kim, S.H. Park, S.H. Kim, S. Cho, A.J. Heeger, Adv. Mater. 19, 2445–2449 (2007)

    Article  CAS  Google Scholar 

  13. S.H. Kim, J.Y. Kim, S.H. Park, K. Lee, Proc. SPIE-Int. Soc. Opt. Eng. 5937, 59371 G (2005)

  14. J.Y. Kim, K. Lee, N.E. Coates, T.-Q. Nguyen, M. Dante, A.J. Heeger, Science 317, 222–225 (2007)

    Article  CAS  Google Scholar 

  15. L. Dou, J. Gao, E. Richard, J. You, C.-C. Chen, K.C. Cha, Y. He, G. Li, Y. Yang, J. Am. Chem. Soc. 134, 10071–10079 (2012)

    Article  CAS  Google Scholar 

  16. N. Wang, Z. Chen, W. Wei, Z. Jiang, J. Am. Chem. Soc. 135, 17060–17068 (2013)

    Article  CAS  Google Scholar 

  17. S. Bobinger, J. Anderson, Environ. Sci. Technol. 43, 8119–8125 (2009)

    Article  CAS  Google Scholar 

  18. S. Cho, K. Lee, A.J. Heeger, Adv. Mater. 21, 1–4 (2009)

    Google Scholar 

  19. R. Duan, L. Ye, X. Guo, Y. Huang, P. Wang, S. Zhang, J. Zhang, L. Huo, J. Hou, Macromolecules 45, 3032–3038 (2012)

    Article  CAS  Google Scholar 

  20. Y. Wang, F. Yang, Y. Liu, R. Peng, S. Chen, Z. Ge, Macromolecules 46, 1368–1375 (2013)

    Article  CAS  Google Scholar 

  21. D.M. de Leeuw, M.M.J. Simenon, A.R. Brown, R.E.F. Einehand, Synth. Met. 87, 53–59 (1997)

    Article  Google Scholar 

  22. C.J. Brabec, C. Winder, N.S. Sariciftici, J.C. Hummelen, A. Dhanabalan, P.A. van Hal, R.A.J. Janssen, Adv. Funct. Mater. 12, 709–712 (2002)

    Article  CAS  Google Scholar 

  23. J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 104, 4971–5004 (2004)

    Article  Google Scholar 

  24. L. Zhang, K. Pei, M. Yu, Y. Huang, H. Zhao, M. Zeng, Y. Wang, J. Gao, J. Phys. Chem. C 116, 26154–26161 (2012)

    Article  CAS  Google Scholar 

  25. Y. Zhang, Z. Li, S. Walkim, S. Alem, S.-W. Tsang, J. Lu, J. Ding, Y. Tao, Org. Electron. 12, 1211–1215 (2011)

    Article  CAS  Google Scholar 

  26. X. Wang, P. Jiang, Y. Chen, H. Luo, Z. Zhang, H. Wang, X. Li, G. Yu, Y. Li, Macromolecules 46, 4805–4812 (2013)

    Article  CAS  Google Scholar 

  27. B.R. Aïch, J. Lu, S. Beaupré, M. Leclerc, Y. Tao, Org. Electron. 13, 1736–1741 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant fund from the National Research Foundation (NRF) (2011-0028320) and the Pioneer Research Center Program through the NRF (2013M3C1A3065522) by the Ministry of Science, ICT & Future Planning (MSIP) of Korea. JHL acknowledges a financial support by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012-0531).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Ho Jin.

Additional information

Article Note

N. Chakravarthi and K. Gunasekar have contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakravarthi, N., Gunasekar, K., Jin, SH. et al. Synthesis and Photovoltaic Properties of 2D π-Conjugated Polymers Based on Alkylbenzothiophene Substituted Benzodithiophene Donor Unit with Titanium Sub-Oxide (TiOX) as an Interlayer in the Bulk Heterojunction Device Structure. J Inorg Organomet Polym 25, 107–117 (2015). https://doi.org/10.1007/s10904-014-0108-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-014-0108-y

Keywords

Navigation