Skip to main content
Log in

Abstract

Geopolymer binders are aluminosilicate inorganic polymers with expanding applications as construction materials. For wider industrial use of these binders, limited controls of their rheological properties and short solidification time have to be improved. A surface modification of fly ash microcores allows for better control of the geo-concrete formation. Naturally occurring nanoclays, such as halloysite nanotubes and kaolin nanoplates are cheap and abundantly available materials allowing encapsulating alumosilicate microcores with simple and scalable layer-by-layer (LbL) nanocoating technique. An electrostatic attraction drives coating of anionic nanoclays onto fly ash particles providing a potential to controllably adjust properties of geopolymer composites. LbL technique was used to modify geopolymer through nanoarchitectural formation of composite shells on ash microcores. We describe mechanical and rheological enhancement of geopolymers produced from ash microparticles coated with tubule or platy nanoclays sandwiched with polycations, and its advantages for better concrete materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8

References

  1. D. Huntzinger, T. Eatman, A life-cycle assesment of portland cement manufacturing: comparing the traditional process with alternative technologies. J. Clean. Prod. 17, 668–675 (2009). doi:10.1016/j.jclepro.2008.04.007

    Article  CAS  Google Scholar 

  2. J. Davidovits, Geopolymer Chemistry and Applications, 2nd edn. (Geopolymer Institute, Saint Quintin, 2008), pp. 1–367

    Google Scholar 

  3. P. Duxson, A. Fernandez-Jimenez, J. Provis, G. Lukey, A. Palomo, J. van Deventer, Geopolymer technology: the current state of the art. J. Mater. Sci. 42, 2917–2933 (2007). doi:10.1007/s10853-006-0637-z

    Article  CAS  Google Scholar 

  4. K. MacKenzie, D. Brew, R. Fletcher, R. Vagana, Formation of aluminosilicate geopolymers from 1:1 layer-lattice minerals pre-treated by various methods: a comparative study. J. Mater. Sci. 42, 4667–4674 (2007). doi:10.1007/s10853-006-0173-x

    Article  CAS  Google Scholar 

  5. M.M.A. Abdullah, K. Hussin, M. BnHussain, K.N. Ismail, W.M.W. Ibrahim, Mechanism and chemical reaction of fly ash geopolymer cement-a review. Int. J. Pure Appl. Sci. Technol. 6, 35–44 (2011)

    Google Scholar 

  6. I. Diaz, E. Allouche, S. Eklund, Factors affecting the suitability of fly ash as a source material for geopolymers. Fuel 89, 992–996 (2010). doi:10.1016/j.fuel.2009.09.01

    Article  CAS  Google Scholar 

  7. C. Montes, D. Zang, E.N. Allouche, Rheological behavior of fly ash-based geopolymers with the addition of super-plasticizers. J. Sustain. Cem. Based Mater. 1, 179–185 (2012). doi:10.1080/21650373.2012.754568

    Article  CAS  Google Scholar 

  8. I. Diaz, E. Allouche, S. Eklund, A.R. Joshi, K. Kupwade-Patil, Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline coal ash. Waste Manag. 32, 1521–1527 (2012). doi:10.1016/j.wasman.2012.03.030

    Article  Google Scholar 

  9. Y. Lvov, G. Decher, H. Möhwald, Assembly, structural characterization and thermal behavior of LbL deposited ultrathin films of polyvinylsulfonate and polyallylamine. Langmuir 9, 481–486 (1993). doi:10.1021/la00026a020

    Article  CAS  Google Scholar 

  10. K. Ariga, M. McShane, Y. Lvov, Q. Ji, A. Vinu, J.P. Hill, Inorganic nanoarchitechtonics for biological applications. Chem. Mater. 24, 728–737 (2012). doi:10.1021/cm202281m

    Article  CAS  Google Scholar 

  11. G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997). doi:10.1126/science.277.5330.1232

    Article  CAS  Google Scholar 

  12. F. Caruso, R. Caruso, H. Möhwald, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282, 1111–1114 (1998). doi:10.1126/science.282.5391.1111

    Article  CAS  Google Scholar 

  13. Y. Lvov, S. Eadula, Z. Zhang, Z. Lu, G. Grozdits, LbL nanocoating of mill broken fibers for improved paper. J. Nord. Pulp Pap. Res. 21, 552–559 (2006). doi:10.3183/NPPRJ-2006-21-05-p552-557

    Article  CAS  Google Scholar 

  14. G. Bantchev, Z. Lu, Y. Lvov, LbL nanoshell assembly on colloids through simplified washless process. J. Nanosci. Nanotechnol. 9, 396–403 (2009). doi:10.1166/jnn.2009.J055

    Article  CAS  Google Scholar 

  15. Y. Lvov, D. Shchukin, H. Möhwald, R. Price, Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2, 814–820 (2008). doi:10.1021/nn800259q

    Article  CAS  Google Scholar 

  16. E. Abdullayev, Y. Lvov, clay nanotubes for corrosion inhibitor encapsulation: release control with end stoppers. J. Mater. Chem. 20, 6681–6687 (2010). doi:10.1039/C0JM00810A

    Article  CAS  Google Scholar 

  17. E. Abdullayev, K. Sakakibara, K. Okamoto, W. Wei, K. Ariga, Y. Lvov, Natural tubule clay template synthesis of silver nanorods for antibacterial coating. J. Appl. Mater. Inter. 3, 4040–4048 (2011). doi:10.1021/am200896d

    Article  CAS  Google Scholar 

  18. E. Abdullayev, A. Joshi, W. Wei, Y. Zhao, Y. Lvov, Enlargement of clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 6, 7216–7226 (2012). doi:10.1021/nn302328x

    Article  CAS  Google Scholar 

  19. Y. Lvov, E. Abdullayev, Functional polymer-clay nanotube composites with sustain release of chemical agents. Prog. Polym. Sci. 38, 1690–1719 (2013). doi:10.1016/j.progpolymsci.2013.05.009

    Article  CAS  Google Scholar 

  20. K. Ariga, Y. Yamauchi, G. Rydzek, Q. Ji, Y. Yonamine, K. Wu, J. Hill, LbL nanoarchitectonics: invention, innovation, and evolution. Chem. Lett. 43, 36–68 (2014). doi:10.1246/cl.130987

    Article  CAS  Google Scholar 

  21. J. Tailby, K. MacKenzie, Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals. Cem. Concr. Res. 40, 787–794 (2010). doi:10.1016/j.cemconres.2009.12.003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support by NSF-1029147 and 1003897 Grants. Any opinions, findings, and conclusions or recommendations expressed in this report are those of authors and do not necessarily reflect the view of National Science Foundation. YL thanks funding by the Russian Government Program of Competitive Growth of Kazan Federal University among World’s Leading Academic Centers. We thank Applied Minerals Co. NY for supply of halloysite and kaolin WP1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erez Allouche or Yuri Lvov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, A., Montes, C., Salehi, S. et al. Optimization of Geopolymer Properties by Coating of Fly-Ash Microparticles with Nanoclays. J Inorg Organomet Polym 25, 282–292 (2015). https://doi.org/10.1007/s10904-014-0105-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-014-0105-1

Keywords

Navigation