Skip to main content
Log in

Transient Absorption of N719 and its Electron Transfer Kinetics on ZnO Nanoparticles Surface

Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The transient absorption and emission spectra of ruthenium complex sensitizer N719 under excitation in different solvents were studied. Isopropanol was found to stabilize the singlet excited state of N719. An emission band centered at 460 nm resulting from the singlet excited state of N719 was observed at 1 ns time delay, which is much longer than the reported observation time of the singlet excited state of N719. The triplet excited state of N719 undergoes photophysical decay in acetonitile and isopropanol with lifetimes of around 40 ns, while it may encounter photochemical reactions in water resulting in long living intermediate. The sensitizer was introduced to the surface of three types of ZnO nanoparticles with different morphology, which were used as the electron acceptors upon photoexcitation. The electron transfer dynamics between sensitized N719 and ZnO interface both in the presence and absence of electrolyte were studied by time-correlated single photon counting technique, nanosecond transient absorption and emission spectroscopies. It was revealed that the electrolyte has a significant impact upon the electron transfer dynamics at the N719-ZnO interface. In the absence of electrolyte, the electron transfer process at the N719-ZnO interface is dependent on the depth of defects in ZnO nanoparticles. Conversely, in the presence of electrolyte, ZnO defects show no impacts on the electron transfer process at the N719-ZnO interface and effective electron injection happens similarly from the excited N719 to ZnO in spite of ZnO particle sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  2. Y.Y. Xi, Y.F. Hsu, A.B. Djurišić, A.M.C. Ng, W.K. Chan, H.L. Tam, K.W. Cheah, Appl. Phys. Lett. 92, 113505 (2008)

    Article  Google Scholar 

  3. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, Science 292, 1897 (2001)

    Article  CAS  Google Scholar 

  4. K. Wang, Y. Vygranenko, A. Nathan, Appl. Phys. Lett. 101, 114508 (2007)

    Google Scholar 

  5. K.K. Wong, A. Ng, X.Y. Chen, Y.H. Ng, Y.H. Leung, K.H. Ho, A.B. Djurišić, A.M.C. Ng, W.K. Chan, L. Yu, D.L. Phillips, Appl. Mater. Interfaces 4, 1254 (2012)

    Article  CAS  Google Scholar 

  6. C.T. Wu, W.P. Liao, J.J. Wu, J. Mater. Chem. 21, 2871 (2011)

    Article  CAS  Google Scholar 

  7. V.M. Guerin, C. Magne, T. Pauporte, T.L. Bahers, J. Rathousky, ACS Appl. Mater. Interfaces 2, 3677 (2010)

    Article  CAS  Google Scholar 

  8. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P.D. Yang, Nat. Mater. 4, 455 (2005)

    Article  CAS  Google Scholar 

  9. H.P. Dong, L.D. Wang, R. Gao, B.B. Ma, Y. Qiu, J. Mater. Chem. 21, 19389 (2011)

    Article  CAS  Google Scholar 

  10. C.T. Wu, J.J. Wu, J. Mater. Chem. 21, 13605 (2011)

    Article  CAS  Google Scholar 

  11. Y.H. Lai, C.Y. Lin, H.W. Chen, J.G. Chen, C.W. Kung, R. Vittal, K.C. Ho, J. Mater. Chem. 20, 9379 (2010)

    Article  CAS  Google Scholar 

  12. G. Ramakrishna, D.A. Jose, D.K. Kumar, A. Das, D.K. Palit, H.N. Ghosh, J. Phys. Chem. B 109, 15445 (2005)

    Article  CAS  Google Scholar 

  13. V.K. Thorsmolle, B. Wenger, J. Teuscher, C. Bauer, J. Moser, E. Chimia 61, 631 (2007)

    Article  CAS  Google Scholar 

  14. A. Islam, K. Hara, L.P. Singh, R. Katoh, M. Yanagida, S. Murata, Y. Takahashi, H. Sugihara, H. Arakawa, Chem. Lett. 29, 490 (2000)

    Article  Google Scholar 

  15. N.A. Anderson, T.Q. Lian, Annu. Rev. Phys. Chem. 56, 491 (2005)

    Article  CAS  Google Scholar 

  16. R.J. Ellingson, J.B. Asbury, S. Ferrere, H.N. Ghosh, J.R. Sprague, T.Q. Lian, A.J. Nozik, J. Phys. Chem. B 102, 6455 (1998)

    Article  CAS  Google Scholar 

  17. D.F. Watson, G.J. Meyer, Annu. Rev. Phys. Chem. 56, 119 (2005)

    Article  CAS  Google Scholar 

  18. S.E. Koops, B.C. O’Regan, P.R.F. Barnes, J.R. Durrant, J. Am. Chem. Soc. 131, 4808 (2009)

    Article  CAS  Google Scholar 

  19. Y.F. Zhang, H.R. Zhang, Y.F. Wang, W.F. Zhang, J. Phys. Chem. C 112, 8553 (2008)

    Article  CAS  Google Scholar 

  20. Z.S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Coord. Chem. Rev. 248, 1381 (2004)

    Article  CAS  Google Scholar 

  21. M.Y. Guo, A.M.C. Ng, F.Z. Liu, A.B. Djurišić, W.K. Chan, H.M. Su, K.S. Wong, J. Phys. Chem. C 115, 11095 (2011)

    Article  CAS  Google Scholar 

  22. C.P. León, L. Kador, B. Peng, M. Thelakkat, J. Phys. Chem. B 109, 5783 (2005)

    Article  Google Scholar 

  23. O. Bräm, F. Messina, A.M.E. Zohry, A. Cannizzo, M. Chergui, Chem. Phys. 393, 51 (2012)

    Article  Google Scholar 

  24. O. Bräm, A. Cannizzo, M. Chergui, Phys. Chem. Chem. Phys. 14, 7934 (2012)

    Article  Google Scholar 

  25. S. Fantacci, F.D. Angelis, A. Selloni, J. Am. Chem. Soc. 125, 4381 (2003)

    Article  CAS  Google Scholar 

  26. L. Yu, J. Xi, H.T. Chan Su, T. Antrobus, L.J. Tong, B. Dong, W.K. Phillips D. L, J. Phys. Chem. C 117, 2041 (2013)

    Article  CAS  Google Scholar 

  27. A.B. Djurišić, A.M.C. Ng, X.Y. Chen, Prog. Quantum Electron 34, 191–259 (2010)

    Article  Google Scholar 

  28. A.B. Djurišić, Y.H. Leung, K.H. Tam, Y.F. Hsu, L. Ding, W.K. Ge, Y.C. Zhong, K.S. Wong, W.K. Chan, H.L. Tam, K.W. Cheah, W.M. Kwok, D.L. Phillips, Nanotechnology 18, 095702 (2007)

    Article  Google Scholar 

  29. A.L. Smeigh, J.E. Katz, B.S. Brunschwig, N.S. Lewis, J.K. McCusker, J. Phys. Chem. C 112, 12065 (2008)

    Article  CAS  Google Scholar 

  30. A. Marton, C.C. Clark, R. Srinivasan, R.E. Freundlich, A.A.N. Sarjeant, G. Meyer, J. Inorg. Chem. 45, 362 (2006)

    Article  CAS  Google Scholar 

  31. P. Wang, B. Wenger, R. Humphry-Baker, J.E. Moser, J. Teuscher, W. Kantlehner, J. Mezger, E.V. Stoyanov, S.M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc. 127, 6850 (2005)

    Article  CAS  Google Scholar 

  32. C.C. Clark, A. Marton, R. Srinivasan, A.A.N. Sarjeant, G. Meyer, J. Inorg. Chem. 45, 4728 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Research Grants Council of Hong Kong (HKU 700311P and HKU700613P), and the University Grants Committee Special Equipment Grant (SEG-HKU-07). J. Xi acknowledges the support from the National Natural Science Foundation of China (20973099).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Lee Phillips or Wai Kin Chan.

Additional information

This paper is dedicated to Prof. Benzhong Tang for his scientific accomplishments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, LH., Xi, JY., Lo, K.C. et al. Transient Absorption of N719 and its Electron Transfer Kinetics on ZnO Nanoparticles Surface. J Inorg Organomet Polym 25, 169–175 (2015). https://doi.org/10.1007/s10904-014-0096-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-014-0096-y

Keywords

Navigation