Skip to main content
Log in

Nitrile and Cyanohydrin Hydration with Nanoparticles Formed In Situ from a Platinum Dihydride Complex

Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The trans-PtH2(P(OMe)3)2 complex was synthesized and tested as a nitrile hydration catalyst. Under nitrile hydration reaction conditions, the complex degrades to Pt nanoparticles, which are catalytically active for nitrile hydration. TEM analysis shows that the Pt nanoparticles are approximately 2 nm in diameter. 31P NMR and XPS studies of the nanoparticles show that the stabilizing ligand on the surface of the nanoparticles is either P(OMe)3 or OP(OMe)3. The Pt nanoparticles are catalytically active for the hydration of cyanohydrins, a class of nitriles that are difficult to hydrate because homogeneous catalysts are susceptible to cyanide poisoning. The Pt nanoparticles are inhibited slightly by large excesses of cyanide but still remain catalytically active. Glycolonitrile and lactonitrile were quantitatively converted to their respective amides, and acetone cyanohydrin was converted to α-hydroxyisobutyronitrile in 30 % yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. A common autocatalytic reaction scheme for the formation of nanoparticles is given by these two equations: A → B; A + B → 2B. The A species in this equation is trans-PtH2(P(OMe)3)2 and B represents Pt(0), which goes on to form a nanoparticle [21, 22].

References

  1. S. Bizzari, Methyl Methacrylate, in Chemical Economics Handbook Marketing Research Report (SRI Consulting, Menlo Park, 2012)

    Google Scholar 

  2. T.J. Ahmed, S.M.M. Knapp, D.R. Tyler, Coord. Chem. Rev. 255, 949 (2011)

    Article  CAS  Google Scholar 

  3. R. García-Álvarez, P. Crochet, V. Cadierno, Green Chem. 15, 46 (2013)

    Article  Google Scholar 

  4. V.Y. Kukushkin, A.J.L. Pombeiro, Inorg. Chim. Acta 358, 1 (2005)

    Article  CAS  Google Scholar 

  5. T.J. Ahmed, B.R. Fox, S.M.M. Knapp, R.B. Yelle, J.J. Juliette, D.R. Tyler, Inorg. Chem. 48, 7828 (2009)

    Article  CAS  Google Scholar 

  6. S.M.M. Knapp, T.J. Sherbow, J.J. Juliette, D.R. Tyler, Organometallics 31, 2941 (2012)

    Article  CAS  Google Scholar 

  7. S.M.M. Knapp, T.J. Sherbow, R.B. Yelle, L.N. Zakharov, J.J. Juliette, D.R. Tyler, Organometallics 32, 824 (2013)

    Article  CAS  Google Scholar 

  8. S.M.M. Knapp, T.J. Sherbow, R.B. Yelle, J.J. Juliette, D.R. Tyler, Organometallics 32, 3744 (2013)

    Article  CAS  Google Scholar 

  9. R. García-Álvarez, J. Díez, P. Crochet, V. Cadierno, Organometallics 30, 5442 (2011)

    Article  Google Scholar 

  10. D.B. Grotjahn, E.J. Kragulj, C.D. Zeinalipour-Yazdi, V. Miranda-Soto, D.A. Lev, A.L. Cooksy, J. Am. Chem. Soc. 130, 10860 (2008)

    Article  CAS  Google Scholar 

  11. D.B. Grotjahn, Chemistry 11, 7146 (2005)

    Article  CAS  Google Scholar 

  12. D.B. Grotjahn, V. Miranda-Soto, E.J. Kragulj, D.A. Lev, G. Erdogan, X. Zeng, A.L. Cooksy, J. Am. Chem. Soc. 130, 20 (2008)

    Article  CAS  Google Scholar 

  13. M. Muranaka, I. Hyodo, W. Okumura, T. Oshiki, Catal. Today 164, 552 (2011)

    Article  CAS  Google Scholar 

  14. P. Daw, A. Sinha, S.M.W. Rahaman, S. Dinda, J.K. Bera, Organometallics 31, 3790 (2012)

    Article  CAS  Google Scholar 

  15. J. Díez, J. Gimeno, I. Merino, E. Rubio, F.J. Suárez, Inorg. Chem. 50, 4868 (2011)

    Article  Google Scholar 

  16. W.-C. Lee, J.M. Sears, R.A. Enow, K. Eads, D.A. Krogstad, B.J. Frost, Inorg. Chem. 52, 1737 (2013)

    Article  CAS  Google Scholar 

  17. V. Cadierno, J. Díez, J. Francos, J. Gimeno, Chemistry 16, 9808 (2010)

    Article  CAS  Google Scholar 

  18. R. García-Álvarez, J. Díez, P. Crochet, V. Cadierno, Organometallics 29, 3955 (2010)

    Article  Google Scholar 

  19. D.L. Packett, C.M. Jensen, R.L. Cowan, C.E. Strouse, W.C. Trogler, Inorg. Chem. 24, 3578 (1985)

    Article  CAS  Google Scholar 

  20. C.M. Jensen, W.C. Trogler, J. Am. Chem. Soc. 108, 723 (1986)

    Article  CAS  Google Scholar 

  21. J.A. Widegren, R.G. Finke, J. Mol. Catal. Chem. 198, 317 (2003)

    Article  CAS  Google Scholar 

  22. J.J. Stracke, R.G. Finke, ACS Catal. 4, 909 (2014)

  23. P.-J. Debouttière, Y. Coppel, A. Denicourt-Nowicki, A. Roucoux, B. Chaudret, K. Philippot, Eur. J. Inorg. Chem. 2012, 1229 (2012)

    Article  Google Scholar 

  24. C.N. Kostelansky, J.J. Pietron, M.-S. Chen, W.J. Dressick, K.E. Swider-Lyons, D.E. Ramaker, R.M. Stroud, C.A. Klug, B.S. Zelakiewicz, T.L. Schull, J. Phys. Chem. B 110, 21487 (2006)

    Article  CAS  Google Scholar 

  25. M. Richter, A. Karschin, B. Spingler, P.C. Kunz, W. Meyer-Zaika, W. Kläui, Dalton Trans. 41, 3407 (2012)

    Article  CAS  Google Scholar 

  26. J.K. Kouba, J.L. Pierce, R.A. Walton, J. Organomet. Chem. 202, C105 (1980)

    Article  CAS  Google Scholar 

  27. B.H. Aw, K.K. Looh, H.S.O. Chan, K.L. Tan, T.S.A. Hor, J. Chem. Soc. Dalton Trans. Inorg. Chem. 3177 (1994)

  28. P. Maekie, P. Persson, L. Oesterlund, J. Colloid Interface Sci. 392, 349 (2013)

    Article  CAS  Google Scholar 

  29. B.A. Sexton, N.R. Avery, Surf. Sci. 129, 21 (1983)

    Article  CAS  Google Scholar 

  30. M. Barber, J.A. Connor, M.F. Guest, I.H. Hillier, M. Schwarz, M. Stacey, J. Chem. Soc. Faraday Trans. 2 69, 551 (1973)

    Article  CAS  Google Scholar 

  31. V.I. Nefedov, Y.V. Salyn, Inorg. Chim. Acta 28, L135 (1978)

    Article  CAS  Google Scholar 

  32. R.B.N. Baig, R.S. Varma, Chem. Commun. 48, 6220 (2012)

    Article  CAS  Google Scholar 

  33. D.L. Packett, W.C. Trogler, Inorg. Chem. 27, 1768 (1988)

    Article  CAS  Google Scholar 

  34. D.L. Packett, W.C. Trogler, J. Am. Chem. Soc. 108, 5036 (1986)

    Article  CAS  Google Scholar 

  35. K. Shimizu, T. Kubo, A. Satsuma, T. Kamachi, K. Yoshizawa, ACS Catal. 2, 2467 (2012)

  36. T. Subramanian, K. Pitchumani, Catal. Commun. 29, 109 (2012)

    Article  CAS  Google Scholar 

  37. A. Ishizuka, Y. Nakazaki, T. Oshiki, Chem. Lett. 38, 360 (2009)

    Article  CAS  Google Scholar 

  38. T. Mitsudome, Y. Mikami, H. Mori, S. Arita, T. Mizugaki, K. Jitsukawa, K. Kaneda, Chem. Commun. 3258 (2009)

  39. Y.-M. Liu, L. He, M.-M. Wang, Y. Cao, H.-Y. He, K.-N. Fan, ChemSusChem 5, 1392 (2012)

    Article  CAS  Google Scholar 

  40. A.Y. Kim, H.S. Bae, S. Park, S. Park, K.H. Park, Catal. Lett. 141, 685 (2011)

    Article  CAS  Google Scholar 

  41. H. Woo, K. Lee, S. Park, K.H. Park, Molecules 19, 699 (2014)

    Article  Google Scholar 

  42. R. Narayanan, M.A. El-Sayed, J. Phys. Chem. B 107, 12416 (2003)

    Article  CAS  Google Scholar 

  43. J. Bravo, S. Bolaño, L. Gonsalvi, M. Peruzzini, Coord. Chem. Rev. 254, 555 (2010)

    Article  CAS  Google Scholar 

  44. D.J. Daigle, Inorg. Synth. 32, 40 (1998)

Download references

Acknowledgments

Rohm and Hass Chemical Company and the NSF (CHE-0719171) are acknowledged for the support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Tyler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Downs, E.L., Tyler, D.R. Nitrile and Cyanohydrin Hydration with Nanoparticles Formed In Situ from a Platinum Dihydride Complex. J Inorg Organomet Polym 25, 73–80 (2015). https://doi.org/10.1007/s10904-014-0079-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-014-0079-z

Keywords

Navigation