Skip to main content
Log in

Three enhancements for optimization-based bound tightening

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Optimization-based bound tightening (OBBT) is one of the most effective procedures to reduce variable domains of nonconvex mixed-integer nonlinear programs (MINLPs). At the same time it is one of the most expensive bound tightening procedures, since it solves auxiliary linear programs (LPs)—up to twice the number of variables many. The main goal of this paper is to discuss algorithmic techniques for an efficient implementation of OBBT. Most state-of-the-art MINLP solvers apply some restricted version of OBBT and it seems to be common belief that OBBT is beneficial if only one is able to keep its computational cost under control. To this end, we introduce three techniques to increase the efficiency of OBBT: filtering strategies to reduce the number of solved LPs, ordering heuristics to exploit simplex warm starts, and the generation of Lagrangian variable bounds (LVBs). The propagation of LVBs during tree search is a fast approximation to OBBT without the need to solve auxiliary LPs. We conduct extensive computational experiments on MINLPLib2. Our results indicate that OBBT is most beneficial on hard instances, for which we observe a speedup of 17–19 % on average. Most importantly, more instances can be solved when using OBBT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Precisely, if \(\ell _j\) increases for \(\tilde{r}_j > 0\) in (18) or \(\tilde{r}_j < 0\) in (19), and if \(u_j\) decreases for \(\tilde{r}_j < 0\) in (18) or \(\tilde{r}_j > 0\) in (19).

  2. Let U and L be the global upper and lower bounds, respectively. Then SCIP terminates if either \(U-L \leqslant \epsilon \) (absolute gap limit reached) or U and L have same sign, \(|U|,|L| > 10^{-9}\), and \(|U - L| / \min \{|U|,|L|\} \leqslant \epsilon \) (relative gap limit reached).

  3. smallinvDAXr2b100-110, smallinvDAXr4b150-165, smallinvDAXr1b100-110, rsyn0805h, nvs09

References

  1. Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technische Universität Berlin (2007). URN:nbn:de:kobv:83-opus-16117

  2. Achterberg, T., Wunderling, R.: Mixed integer programming: analyzing 12 years of progress. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization, pp. 449–481. Springer, Berlin (2013). doi:10.1007/978-3-642-38189-8_18

    Chapter  Google Scholar 

  3. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, \(\alpha \)BB, for general twice-differentiable constrained NLPs–II. Implementation and computational results. Comput. Chem. Eng. 22(9), 1159–1179 (1998). doi:10.1016/S0098-1354(98)00218-X

    Article  Google Scholar 

  4. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: Global optimization of mixed-integer nonlinear problems. AIChE J. 46(9), 1769–1797 (2000). doi:10.1002/aic.690460908

    Article  Google Scholar 

  5. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: Finding cuts in the TSP (A preliminary report). Technical report 95-05, Center for Discrete Mathematics & Theoretical Computer Science (DIMACS) (1995)

  6. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  7. Belotti, P.: Bound reduction using pairs of linear inequalities. J. Glob. Optim. 56(3), 787–819 (2013). doi:10.1007/s10898-012-9848-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Belotti, P., Cafieri, S., Lee, J., Liberti, L.: Feasibility-based bounds tightening via fixed points. In: W. Wu, O. Daescu (eds.) Combinatorial Optimization and Applications, Lecture Notes in Computer Science, vol. 6508, pp. 65–76. Springer, Berlin (2010). doi:10.1007/978-3-642-17458-2_7

  9. Belotti, P., Cafieri, S., Lee, J., Liberti, L.: On feasibility based bounds tightening. Technical report 3325, Optimization Online (2012). http://www.optimization-online.org/DB_HTML/2012/01/3325.html

  10. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24, 597–634 (2009). doi:10.1080/10556780903087124

    Article  MathSciNet  MATH  Google Scholar 

  11. Berthold, T.: Heuristic algorithms in global MINLP solvers. Ph.D. thesis, Technische Universität Berlin (2014)

  12. Bixby, R.E.: Solving real-world linear programs: a decade and more of progress. Oper. Res. 50(1), 3–15 (2002). doi:10.1287/opre.50.1.3.17780

    Article  MathSciNet  MATH  Google Scholar 

  13. Caprara, A., Fischetti, M.: \(\{0, \tfrac{1}{2}\}\)-Chvátal-Gomory cuts. Math. Progr. 74(3), 221–235 (1996). doi:10.1007/BF02592196

    Article  MATH  Google Scholar 

  14. Caprara, A., Locatelli, M.: Global optimization problems and domain reduction strategies. Math. Progr. 125, 123–137 (2010). doi:10.1007/s10107-008-0263-4

    Article  MathSciNet  MATH  Google Scholar 

  15. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math. 4(4), 305–337 (1973). doi:10.1016/0012-365X(73)90167-2

    Article  MathSciNet  MATH  Google Scholar 

  16. CMU-IBM Cyber-Infrastructure for MINLP. http://www.minlp.org/

  17. COIN-OR: Couenne, an exact solver for nonconvex MINLPs.http://www.coin-or.org/Couenne

  18. COIN-OR: CppAD, a package for differentiation of CppAD  algorithms. http://www.coin-or.org/CppAD

  19. COIN-OR: Ipopt, Interior point optimizer. http://www.coin-or.org/Ipopt

  20. Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a large-scale traveling-salesman problem. Oper. Res. 2, 393–410 (1954). doi:10.1287/opre.2.4.393

    MathSciNet  Google Scholar 

  21. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Progr. 91(2), 201–213 (2002). doi:10.1007/s101070100263

    Article  MathSciNet  MATH  Google Scholar 

  22. Fügenschuh, A., Martin, A.: Computational integer programming and cutting planes. In: Aardal, K., Nemhauser, G.L., Weismantel, R. (eds.) Discrete Optimization, Handbooks in Operations Research and Management Science, vol. 12, pp. 69–121. Elsevier, Amsterdam (2005). doi:10.1016/S0927-0507(05)12002-7

    Google Scholar 

  23. Gamrath, G., Koch, T., Martin, A., Miltenberger, M., Weninger, D.: Progress in presolving for mixed integer programming. Math. Progr. Comput. 7(4), 367–398 (2015). doi:10.1007/s12532-015-0083-5

    Article  MathSciNet  MATH  Google Scholar 

  24. Gleixner, A., Vigerske, S.: Analyzing the computational impact of individual MINLP solver components. Talk at MINLP 2014, Carnegie Mellon University, Pittsburgh, PA, USA (2014). http://minlp.cheme.cmu.edu/2014/papers/gleixner.pdf

  25. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Society 64, 275–278 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gomory, R.E.: An algorithm for the mixed integer problem. Technical report P-1885, The RAND Corporation (1960)

  27. Grossmann, I.E., Sahinidis, N.V. (eds.): Special issue on mixed integer programming and its application to engineering, part I. Optim. Eng. 4(1–2) (2002). http://link.springer.com/journal/11081/4/1/page/1

  28. Hendel, G.: Empirical analysis of solving phases in mixed integer programming. Master’s thesis, Technische Universität Berlin (2014). URN:nbn:de:0297-zib-54270

  29. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  30. Huang, W.: Operative planning of water supply networks by mixed integer nonlinear programming. Master’s thesis, Freie Universität Berlin (2011)

  31. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010. Math. Progr. Comput. 3(2), 103–163 (2011). doi:10.1007/s12532-011-0025-9

    Article  Google Scholar 

  32. LaGO—Lagrangian Global Optimizer.https://projects.coin-or.org/LaGO

  33. Lodi, A., Nogales-Gómez, A., Belotti, P., Fischetti, M., Monaci, M., Salvagnin, D., Bonami, P.: Indicator constraints in mixed-integer programming. Talk at SCIP Workshop 2014, Zuse Institute Berlin, Germany (2014). http://scip.zib.de/workshop/scip_lodi.pdf

  34. Maranas, C.D., Floudas, C.A.: Global optimization in generalized geometric programming. Computers & Chemical Engineering 21(4), 351–369 (1997). doi:10.1016/S0098-1354(96)00282-7

    Article  Google Scholar 

  35. Marchand, H., Wolsey, L.A.: Aggregation and mixed integer rounding to solve MIPs. Oper. Res. 49(3), 363–371 (2001). doi:10.1287/opre.49.3.363.11211

    Article  MathSciNet  MATH  Google Scholar 

  36. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Progr. B 10(1), 147–175 (1976). doi:10.1007/BF01580665

    Article  MATH  Google Scholar 

  37. MINLP library 2. http://gamsworld.org/minlp/minlplib2

  38. Misener, R., Floudas, C.A.: Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations. Math. Progr. 136(1), 155–182 (2012). doi:10.1007/s10107-012-0555-6

    Article  MathSciNet  MATH  Google Scholar 

  39. Misener, R., Floudas, C.A.: GloMIQO: global mixed-integer quadratic optimizer. J. Glob. Optim. 57, 3–50 (2013). doi:10.1007/s10898-012-9874-7

    Article  MathSciNet  MATH  Google Scholar 

  40. Misener, R., Floudas, C.A.: ANTIGONE: algorithms for coNTinuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59(2–3), 503–526 (2014). doi:10.1007/s10898-014-0166-2

    Article  MathSciNet  MATH  Google Scholar 

  41. Nannicini, G., Belotti, P., Lee, J., Linderoth, J., Margot, F., Wächter, A.: A probing algorithm for MINLP with failure prediction by SVM. In: T. Achterberg, J.C. Beck (eds.) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, Lecture Notes in Computer Science, vol. 6697, pp. 154–169. Springer, Berlin (2011). doi:10.1007/978-3-642-21311-3_15

  42. Nemhauser, G.L., Wolsey, L.A.: A recursive procedure to generate all cuts for 0–1 mixed integer programs. Math. Progr. 46(1–3), 379–390 (1990). doi:10.1007/BF01585752

    Article  MathSciNet  MATH  Google Scholar 

  43. Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. Acta Numer. 13, 271–369 (2004). doi:10.1017/S0962492904000194

    Article  MathSciNet  MATH  Google Scholar 

  44. Nowak, I., Vigerske, S.: LaGO: a (heuristic) branch and cut algorithm for nonconvex MINLPs. Cent. Eur. J. Oper. Res. 16(2), 127–138 (2008). doi:10.1007/s10100-007-0051-x

    Article  MathSciNet  MATH  Google Scholar 

  45. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36(6), 1389–1401 (1957). doi:10.1002/j.1538-7305.1957.tb01515.x

    Article  Google Scholar 

  46. Quesada, I., Grossmann, I.E.: Global optimization algorithm for heat exchanger networks. Ind. Eng. Chem. Res. 32(3), 487–499 (1993). doi:10.1021/ie00015a012

    Article  Google Scholar 

  47. Quesada, I., Grossmann, I.E.: A global optimization algorithm for linear fractional and bilinear programs. J. Glob. Optim. 6, 39–76 (1995). doi:10.1007/BF01106605

    Article  MathSciNet  MATH  Google Scholar 

  48. Ryoo, H., Sahinidis, N.: Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput. Chem. Eng. 19(5), 551–566 (1995). doi:10.1016/0098-1354(94)00097-2

    Article  Google Scholar 

  49. Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8(2), 107–138 (1996). doi:10.1007/BF00138689

    Article  MathSciNet  MATH  Google Scholar 

  50. Savelsbergh, M.W.: Preprocessing and probing techniques for mixed integer programming problems. ORSA J. Comput. 6(4), 445–454 (1994). doi:10.1287/ijoc.6.4.445

    Article  MathSciNet  MATH  Google Scholar 

  51. SCIP—solving constraint integer programs. http://scip.zib.de

  52. Smith, E.M., Pantelides, C.C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 23, 457–478 (1999). doi:10.1016/S0098-1354(98)00286-5

    Article  Google Scholar 

  53. SoPlex—the Sequential object-oriented simPlex. http://soplex.zib.de/

  54. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972). doi:10.1137/0201010

    Article  MathSciNet  MATH  Google Scholar 

  55. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Progr. 99, 563–591 (2004). doi:10.1007/s10107-003-0467-6

    Article  MathSciNet  MATH  Google Scholar 

  56. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Progr. 103(2), 225–249 (2005). doi:10.1007/s10107-005-0581-8

    Article  MathSciNet  MATH  Google Scholar 

  57. Vigerske, S.: Decomposition in multistage stochastic programming and a constraint integer programming approach to mixed-integer nonlinear programming. Ph.D. thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II (2013). URN:nbn:de:kobv:11-100208240

  58. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Progr. 106(1), 25–57 (2006). doi:10.1007/s10107-004-0559-y

    Article  MathSciNet  MATH  Google Scholar 

  59. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

  60. Williams, H.P.: A reduction procedure for linear and integer programming models. In: Redundancy in Mathematical Programming, Lecture Notes in Economics and Mathematical Systems, vol. 206, pp. 87–107. Springer, Berlin (1983). doi:10.1007/978-3-642-45535-3_9

  61. Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. Ph.D. thesis, Technische Universität Berlin (1996). URN:nbn:de:0297-zib-5386

  62. Zamora, J.M., Grossmann, I.E.: A branch and contract algorithm for problems with concave univariate, bilinear and linear fractional terms. J. Glob. Optim. 14, 217–249 (1999). doi:10.1023/A:1008312714792

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We want to thank Pietro Belotti and Domenico Salvagnin for fruitful discussions and their valuable comments on earlier versions of this paper, as well as all SCIP developers, especially Tobias Achterberg for creating SCIP and Stefan Vigerske for providing the MINLP core of SCIP. Furthermore, we would like to acknowledge the support of Gregor Hendel in the evaluation of the computational experiments, for which we used his Ipet tool [28]. This work was supported by the Research Campus Modal “Mathematical Optimization and Data Analysis Laboratories” funded by the German Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Berthold.

Additional information

This work was supported by the Research Campus Modal “Mathematical Optimization and Data Analysis Laboratories” funded by the German Ministry of Education and Research (BMBF Grant 05M14ZAM). All responsibilty for the content of this publication is assumed by the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 406 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gleixner, A.M., Berthold, T., Müller, B. et al. Three enhancements for optimization-based bound tightening. J Glob Optim 67, 731–757 (2017). https://doi.org/10.1007/s10898-016-0450-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0450-4

Keywords

Navigation