Skip to main content
Log in

An eigenvalue decomposition based branch-and-bound algorithm for nonconvex quadratic programming problems with convex quadratic constraints

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we propose a branch-and-bound algorithm for finding a global optimal solution for a nonconvex quadratic program with convex quadratic constraints (NQPCQC). We first reformulate NQPCQC by adding some nonconvex quadratic constraints induced by eigenvectors of negative eigenvalues associated with the nonconvex quadratic objective function to Shor’s semidefinite relaxation. Under the assumption of having a bounded feasible domain, these nonconvex quadratic constraints can be further relaxed into linear ones to form a special semidefinite programming relaxation. Then an efficient branch-and-bound algorithm branching along the eigendirections of negative eigenvalues is designed. The theoretic convergence property and the worst-case complexity of the proposed algorithm are proved. Numerical experiments are conducted on several types of quadratic programs to show the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anstreicher, K.M.: Semidefinite programming versus the reformulation–linearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43, 471–484 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arima, N., Kim, S., Kojima, A.: A quadratically constrained quadratic optimization model for completely positive cone programming. SIAM J. Optim. 23, 2320–2340 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Semidefinite relaxations for quadratically constrained quadratic programs: a review and comparisons. Math. Program. 129, 129–157 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bomze, I., Locatelli, M., Tardella, F.: New and old bounds for standard quadratic optimization: dominance, equivalence and incomparability. Math. Program. 115, 31–64 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bomze, I.M., Dür, M., de Klerk, E., Quist, A., Roos, C., Terlaky, T.: On copositive programming and standard quadratic optimization problems. J. Glob. Optim. 18, 301–320 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bomze, I.M.: Copositive optimization-recent developments and applications. Eur. J. Oper. Res. 216, 509–520 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bomze, I.M.: Copositive relaxation beats Lagrangian dual bounds in quadratically and linearly constrained quadratic optimization problems. SIAM J. Optim. 25, 1249–1275 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bomze, I.M., Overton, M.L.: Narrowing the difficulty gap for the Celis–Dennis–Tapia problem. Math. Program. 151, 459–476 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buchheim, C., Wiegele, A.: Semidefinite relaxations for non-convex quadratic mixed-integer programming. Math. Program. 141, 435–452 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113, 259–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120, 479–495 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Burer, S.: Optimizing a polyhedral–semidefinite relaxation of completely positive programs. Math. Program. Comput. 2, 1–19 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, J., Burer, S.: Globally solving nonconvex quadratic programming problems via completely positive programming. Math. Program. Comput. 4, 33–52 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Czyzyk, J., Mesnier, M.P., Moré, J.J.: The NEOS Server. IEEE J. Comput. Sci. Eng. 5, 68–75 (1998)

    Article  Google Scholar 

  15. Deng, Z., Fang, S.-C., Jin, Q., Xing, W.: Detecting copositivity of a symmetric matrix by an adaptive ellipsoid-based approximation scheme. Eur. J. Oper. Res. 229, 21–28 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Deng, Z., Fang, S.-C., Jin, Q., Lu, C.: Conic approximation to nonconvex quadratic programming with convex quadratic constraints. J. Glob. Optim. 61, 459–478 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fortin, C., Wolkowicz, H.: The trust region subproblem and semidefinite programming. Optim. Methods Softw. 19, 41–67 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, S., Luo, Z.-Q., Nie, J., Zhang, S.: Semidefinite relaxation bounds for indefinite homogeneous quadratic optimization. SIAM J. Optim. 19, 503–523 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jeyakumar, V., Li, G.: Trust-region problems with linear inequality constraints: exact SDP relaxation, global optimality and robust optimization. Math. Program. 147, 171–206 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kim, S., Kojima, M., Toh, K.-C.: A Lagrangian-DNN relaxation: a fast method for computing tight lower bounds for a class of quadratic optimization problems. Math. Program. 156, 161–187 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lemarechal, C., Oustry, F.: SDP relaxations in combinatorial optimization from a Lagrangian viewpoint. In: Hadjisavvas, N., Pardalos, P. (eds.) Proceedings of Advances in Convex Analysis and Global Optimization, pp. 119–134. Springer, Boston (2001)

    Chapter  Google Scholar 

  22. Linderoth, J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program. 103, 251–282 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lu, C., Fang, S.-C., Jin, Q., Wang, Z., Xing, W.: KKT solution and conic relaxation for solving quadratically constrained quadratic programming problem. SIAM J. Optim. 21, 1475–1490 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lu, C., Jin, Q., Fang, S.-C., Wang, Z., Xing, W.: Adaptive computable approximation to cones of nonnegative quadratic functions. Optimization 63, 955–980 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Luo, Z.-Q., Sidiropoulos, N.D., Tseng, P., Zhang, S.: Approximation bounds for quadratic optimization with homogeneous quadratic constraints. SIAM J. Optim. 18, 1–28 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Matskani, E., Sidiropoulos, N.D., Luo, Z.-Q., Tassiulas, L.: Convex approximation techniques for joint multiuser downlink beamforming and admission control. IEEE Trans. Wirel. Commun. 7, 2682–2693 (2008)

    Article  Google Scholar 

  28. Pardalos, P.M., Rodgers, G.P.: Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45, 131–144 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is NP-Hard. J. Glob. Optim. 1, 15–22 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Parrilo, P.: Structured Semidefinite Programs and Semi-algebraic Geometry Methods in Robustness and Optimization. Ph.D. thesis, California Institute of Technology (2000)

  31. Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations. Math. Program. 124, 383–411 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3, 411–430 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sherali, H.D., Liberti, L.: Reformulation–Linearization methods for global optimization. Technical report

  34. Shor, N.Z.: Quadratic optimization problems. Sov. J. Comput. Syst. Sci. 25, 1–11 (1987)

    MathSciNet  MATH  Google Scholar 

  35. Shor, N.Z.: Class of global minimum bounds of polynomial functions. Cybernetics 236, 731–734 (1987)

    MATH  Google Scholar 

  36. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 625–653 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sturm, J.F., Zhang, S.: On cones of nonnegative quadratic functions. Math. Oper. Res. 28, 246–267 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. Ser. B 103, 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vandenbussche, D., Nemhauser, G.L.: A branch-and-cut algorithm for nonconvex quadratic programs with box constraints. Math. Program. 102, 559–575 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vandenbussche, D., Nemhauser, G.L.: A polyhedral study of nonconvex quadratic programs with box constraints. Math. Program. 102, 531–557 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ye, Y.: Interior Point Algorithms: Theory and Analysis. Wiley, New York (1997)

    Book  MATH  Google Scholar 

  42. Zhang, Y.J., So, A.M.-C.: Optimal spectrum sharing in MIMO cognitive radio networks via semidefinite programming. IEEE J. Sel. Areas Commun. 29, 362–373 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank three anonymous reviewers for their invaluable suggestions and comments. This work was supported by NSFC No. 11301479, NSFC No. 11501543, Research Foundation for Young Faculty of University of Chinese Academy of Sciences No. Y551037Y00, and the project supported by Zhejiang Provincial Natural Science Foundation of China No. LQ13A010001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingwei Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Deng, Z. & Jin, Q. An eigenvalue decomposition based branch-and-bound algorithm for nonconvex quadratic programming problems with convex quadratic constraints. J Glob Optim 67, 475–493 (2017). https://doi.org/10.1007/s10898-016-0436-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0436-2

Keywords

Navigation