Skip to main content
Log in

Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper introduces a novel methodology for the global optimization of general constrained grey-box problems. A grey-box problem may contain a combination of black-box constraints and constraints with a known functional form. The novel features of this work include (i) the selection of initial samples through a subset selection optimization problem from a large number of faster low-fidelity model samples (when a low-fidelity model is available), (ii) the exploration of a diverse set of interpolating and non-interpolating functional forms for representing the objective function and each of the constraints, (iii) the global optimization of the parameter estimation of surrogate functions and the global optimization of the constrained grey-box formulation, and (iv) the updating of variable bounds based on a clustering technique. The performance of the algorithm is presented for a set of case studies representing an expensive non-linear algebraic partial differential equation simulation of a pressure swing adsorption system for \(\hbox {CO}_{2}\). We address three significant sources of variability and their effects on the consistency and reliability of the algorithm: (i) the initial sampling variability, (ii) the type of surrogate function, and (iii) global versus local optimization of the surrogate function parameter estimation and overall surrogate constrained grey-box problem. It is shown that globally optimizing the parameters in the parameter estimation model, and globally optimizing the constrained grey-box formulation has a significant impact on the performance. The effect of sampling variability is mitigated by a two-stage sampling approach which exploits information from reduced-order models. Finally, the proposed global optimization approach is compared to existing constrained derivative-free optimization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Audet, C., Bechard, V., Chaouki, J.: Spent potliner treatment process optimization using a MADS algorithm. Optim. Eng. 9(2), 143–160 (2008)

    Article  MATH  Google Scholar 

  2. Bartholomew-Biggs, M.C., Parkhurst, S.C., Wilson, S.P.: Using DIRECT to solve an aircraft routing problem. Comput. Optim. Appl. 21(3), 311–323 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boukouvala, F., Ierapetritou, M.G.: Surrogate-based optimization of expensive flowsheet modeling for continuous pharmaceutical manufacturing. J. Pharm. Innov. 8(2), 131–145 (2013)

    Article  Google Scholar 

  4. Caballero, J.A., Grossmann, I.E.: An algorithm for the use of surrogate models in modular flowsheet optimization. AIChE J. 54(10), 2633–2650 (2008)

    Article  Google Scholar 

  5. Egea, J.A., Rodriguez-Fernandez, M., Banga, J.R., Marti, R.: Scatter search for chemical and bio-process optimization. J. Glob. Optim. 37(3), 481–503 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fahmi, I., Cremaschi, S.: Process synthesis of biodiesel production plant using artificial neural networks as the surrogate models. Comput. Chem. Eng. 46, 105–123 (2012)

    Article  Google Scholar 

  7. Fowler, K.R., Reese, J.P., Kees, C.E., Dennis Jr, J.E., Kelley, C.T., Miller, C.T., Audet, C., Booker, A.J., Couture, G., Darwin, R.W., Farthing, M.W., Finkel, D.E., Gablonsky, J.M., Gray, G., Kolda, T.G.: Comparison of derivative-free optimization methods for groundwater supply and hydraulic capture community problems. Adv. Water Resour. 31(5), 743–757 (2008)

    Article  Google Scholar 

  8. Graciano, J.E.A., Roux, G.A.C.L.: Improvements in surrogate models for process synthesis. Application to water network system design. Comput. Chem. Eng. 59, 197–210 (2013)

    Article  Google Scholar 

  9. Hemker, T., Fowler, K., Farthing, M., Stryk, O.: A mixed-integer simulation-based optimization approach with surrogate functions in water resources management. Optim. Eng. 9(4), 341–360 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Henao, C.A., Maravelias, C.T.: Surrogate-based superstructure optimization framework. AIChE J. 57(5), 1216–1232 (2011)

    Article  Google Scholar 

  11. Kleijnen, J.P.C., van Beers, W., van Nieuwenhuyse, I.: Constrained optimization in expensive simulation: Novel approach. Eur. J. Oper. Res. 202(1), 164–174 (2010)

    Article  MATH  Google Scholar 

  12. Wan, X.T., Pekny, J.F., Reklaitis, G.V.: Simulation-based optimization with surrogate models—application to supply chain management. Comput. Chem. Eng. 29(6), 1317–1328 (2005)

    Article  Google Scholar 

  13. Espinet, A., Shoemaker, C., Doughty, C.: Estimation of plume distribution for carbon sequestration using parameter estimation with limited monitoring data. Water Resour. Res. 49(7), 4442–4464 (2013)

    Article  Google Scholar 

  14. Hasan, M.M.F., Baliban, R.C., Elia, J.A., Floudas, C.A.: Modeling, simulation, and pptimization of postcombustion \({\rm CO}_2\) capture for variable feed concentration and flow rate. 2. Pressure swing adsorption and vacuum swing adsorption processes. Ind. Eng. Chem. Res. 51(48), 15665–15682 (2013)

    Article  Google Scholar 

  15. Hasan, M.M.F., Baliban, R.C., Elia, J.A., Floudas, C.A.: Modeling, simulation, and optimization of postcombustion \(\text{ CO }_2\) capture for variable feed concentration and flow rate. 1. Chemical absorption and membrane processes. Ind. Eng. Chem. Res. 51(48), 15642–15664 (2013)

    Article  Google Scholar 

  16. Hasan, M.M.F., Boukouvala, F., First, E.L., Floudas, C.A.: Nationwide, regional, and statewide \(\text{ CO }_2\) capture, utilization, and sequestration supply chain network optimization. Ind. Eng. Chem. Res. 53(18), 7489–7506 (2014)

    Article  Google Scholar 

  17. Li, S., Feng, L., Benner, P., Seidel-Morgenstern, A.: Using surrogate models for efficient optimization of simulated moving bed chromatography. Comput. Chem. Eng. 67, 121–132 (2014)

    Article  Google Scholar 

  18. Forrester, A.I.J., Sóbester, A., Keane, A.J.: Engineering Design Via Surrogate Modelling—A Practical Guide. Wiley, Chichester (2008)

    Book  Google Scholar 

  19. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. MPS-SIAM Series on Optimization, vol. 8. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  20. Martelli, E., Amaldi, E.: PGS-COM: a hybrid method for constrained non-smooth black-box optimization problems: brief review, novel algorithm and comparative evaluation. Comput. Chem. Eng. 63, 108–139 (2014)

    Article  Google Scholar 

  21. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Glob. Optim. 56(3), 1247–1293 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45(3), 385–482 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bjorkman, M., Holmstrom, K.: Global optimization of costly nonconvex functions using radial basis functions. Optim. Eng. 1(4), 373–397 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Booker, A.J., Dennis, J.E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W.: A rigorous framework for optimization of expensive functions by surrogates. Struct. Multidiscip. Optim. 17(1), 1–13 (1999)

    Article  Google Scholar 

  25. Boukouvala, F., Ierapetritou, M.G.: Derivative-free optimization for expensive constrained problems using a novel expected improvement objective function. AIChE J. 60(7), 2462–2474 (2014)

    Article  Google Scholar 

  26. Conn, A.R., Le Digabel, S.: Use of quadratic models with mesh-adaptive direct search for constrained black box optimization. Optim. Methods Softw. 28(1), 139–158 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45(1), 50–79 (2009)

    Article  Google Scholar 

  28. Jakobsson, S., Patriksson, M., Rudholm, J., Wojciechowski, A.: A method for simulation based optimization using radial basis functions. Optim. Engi. 11(4), 501–532 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Global Optim. 21(4), 345–383 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Regis, R.G.: Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points. Eng. Optim. 46(2), 218–243 (2014)

    Article  MathSciNet  Google Scholar 

  32. Regis, R.G., Shoemaker, C.A.: Constrained global optimization of expensive black box functions using radial basis functions. J. Glob. Optim. 31(1), 153–171 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yao, W., Chen, X.Q., Huang, Y.Y., van Tooren, M.: A surrogate-based optimization method with RBF neural network enhanced by linear interpolation and hybrid infill strategy. Optim. Methods Softw. 29(2), 406–429 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Muller, J., Shoemaker, C.A.: Influence ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization methods. J. Glob. Optim. 60(2), 123–144 (2014)

    Article  MATH  Google Scholar 

  35. Viana, F.A.C., Haftka, R.T., Watson, L.T.: Efficient global optimization algorithm assisted by multiple surrogate techniques. J. Glob. Optim. 56(2), 669–689 (2013)

    Article  MATH  Google Scholar 

  36. Davis, E., Ierapetritou, M.: A kriging method for the solution of nonlinear programs with black-box functions. AIChE J. 53(8), 2001–2012 (2007)

    Article  Google Scholar 

  37. Floudas, C.A.: Deterministic Global Optimization, vol. 37. Springer, Berlin (1999)

    Google Scholar 

  38. Floudas, C.A., Gounaris, C.E.: A review of recent advances in global optimization. J. Glob. Optim. 45(1), 3–38 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. First, E.L., Hasan, M.M.F., Floudas, C.A.: Discovery of novel zeolites for natural gas purification through combined material screening and process optimization. AICHE J. 60(5), 1767–1785 (2014)

    Article  Google Scholar 

  40. Hasan, M.M.F., First, E.L., Floudas, C.A.: Cost-effective \(\text{ CO }_2\) capture based on in silico screening of zeolites and process optimization. Phys. Chem. Chem. Phys. 15(40), 17601–17618 (2013)

    Article  Google Scholar 

  41. Abramson, M.: Pattern Search Algorithms for Mixed Variable General Constrained Optimization Problems. Rice University, Houston (2002)

    Google Scholar 

  42. Audet, C., Dennis, J.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17(1), 188–217 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Audet, C., Dennis Jr, J.E.: A progressive barrier for derivative-free nonlinear programming. SIAM J. Optim. 20(1), 445–472 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Holmstrom, K., Quttineh, N.-H., Edvall, M.M.: An adaptive radial basis algorithm (ARBF) for expensive black-box mixed-integer constrained global optimization. Optim. Eng. 9(4), 311–339 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Audet, C., Dennis Jr, J.E.: A pattern search filter method for nonlinear programming without derivatives. SIAM J. Optim. 14(4), 980–1010 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Parr, J.M., Keane, A.J., Forrester, A.I.J., Holden, C.M.E.: Infill sampling criteria for surrogate-based optimization with constraint handling. Eng. Optim. 44(10), 1147–1166 (2012)

    Article  MATH  Google Scholar 

  47. Sasena, M.J., Papalambros, P., Goovaerts, P.: Exploration of metamodeling sampling criteria for constrained global optimization. Eng. Optim. 34(3), 263–278 (2002)

    Article  Google Scholar 

  48. Regis, R.G.: Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions. Comput. Oper. Res. 38(5), 837–853 (2011)

    Article  MathSciNet  Google Scholar 

  49. Abramson, M., Audet, C., Dennis, J., Digabel, S.: OrthoMADS: a deterministic MADS instance with orthogonal directions. SIAM J. Optim. 20(2), 948–966 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Audet, C., Bechard, V., Digabel, S.: Nonsmooth optimization through mesh adaptive direct search and variable neighborhood search. J. Glob. Optim. 41(2), 299–318 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45(3), 385–482 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wild, S.M., Regis, R.G., Shoemaker, C.A.: Orbit: optimization by radial basis function interpolation in trust-regions. SIAM J. Sci. Comput. 30(6), 3197–3219 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. Sankaran, S., Audet, C., Marsden, A.L.: A method for stochastic constrained optimization using derivative-free surrogate pattern search and collocation. J. Comput. Phys. 229(12), 4664–4682 (2010)

    Article  MATH  Google Scholar 

  54. Le Digabel, S.: Algorithm 909: NOMAD: nonlinear optimization with the MADS algorithm. ACM Trans. Math. Softw. (TOMS) 37(4), 1–15 (2011)

    Article  MathSciNet  Google Scholar 

  55. Oeuvray, R.: Trust-region methods based on radial basis functions with application to biomedical imaging. PhD in Mathematics, Ecole Polytechnique Federale de Lausanne (2005)

  56. Powell, M.J.D.: The BOBYQA Algorithm for Bound Constrained Optimization Without Derivatives. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge (2009)

    Google Scholar 

  57. Regis, R.G., Shoemaker, C.A.: Parallel radial basis function methods for the global optimization of expensive functions. Eur. J. Oper. Res. 182(2), 514–535 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  58. Regis, R.G., Shoemaker, C.A.: A stochastic radial basis function method for the global optimization of expensive functions. INFORMS J. Comput. 19(4), 497–509 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  59. Regis, R.G., Shoemaker, C.A.: Improved strategies for radial basis function methods for global optimization. J. Glob. Optim. 37(1), 113–135 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  60. Regis, R.G., Shoemaker, C.A.: A quasi-multistart framework for global optimization of expensive functions using response surface models. J. Glob. Optim. 56(4), 1719–1753 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  61. Powell, M.J.D.: A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Gomez, S., Hennart, J.-P. (eds.) Advances in Optimization and Numerical Analysis: Mathematics and its Applications, vol. 275. Mathematics and Its Applications, pp. 51–67. Springer, Berlin (1994)

    Chapter  Google Scholar 

  62. Quan, N., Yin, J., Ng, S.H., Lee, L.H.: Simulation optimization via kriging: a sequential search using expected improvement with computing budget constraints. IIE Trans. 45(7), 763–780 (2013)

    Article  Google Scholar 

  63. Torn, A., Zilinskas, A.: Global optimization. In: Lecture Notes in Computer Science, vol. 350. Springer, Berlin (1989)

  64. Regis, R.G.: Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions. IEEE Trans. Evol. Comput. 18(3), 326–347 (2014). doi:10.1109/TEVC.2013.2262111

    Article  MathSciNet  Google Scholar 

  65. Misener, R., Floudas, C.A.: Global optimization of mixed-integer models with quadratic and signomial functions: a review. Appl. Comput. Math. 11, 317–336 (2012)

    MathSciNet  MATH  Google Scholar 

  66. Misener, R., Floudas, C.A.: GloMIQO: global mixed-integer quadratic optimizer. J. Glob. Optim. 57(1), 3–50 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  67. Misener, R., Floudas, C.: ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59(2–3), 503–526 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  68. Mckay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1), 55–61 (2000)

    Article  MATH  Google Scholar 

  69. Kahrs, O., Marquardt, W.: The validity domain of hybrid models and its application in process optimization. Chem. Eng. Process. 46(11), 1054–1066 (2007)

    Article  Google Scholar 

  70. Sobieszczanski-Sobieski, J., Haftka, R.T.: Multidisciplinary aerospace design optimization: survey of recent developments. Struct. Optim. 14(1), 1–23 (1997). doi:10.1007/BF01197554

    Article  Google Scholar 

  71. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002)

    Article  Google Scholar 

  72. Lucia, D.J., Beran, P.S., Silva, W.A.: Reduced-order modeling: new approaches for computational physics. Prog. Aerosp. Sci. 40(1–2), 51–117 (2004)

    Article  Google Scholar 

  73. Li, Z., Floudas, C.A.: Optimal scenario reduction framework based on distance of uncertainty distribution and output performance: I. Single reduction via mixed integer linear optimization. Comput. Chem. Eng. 70, 50–65 (2014)

    Article  Google Scholar 

  74. Cressie, N.: Statistics for Spatial Data. Wiley Series in Probability and Statistics. Wiley-Interscience, New York (1993)

    Google Scholar 

  75. Kleijnen, J.P.C.: Kriging metamodeling in simulation: a review. Eur. J. Oper. Res. 192(3), 707–716 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  76. Sacks, J., Welch, W.J., Toby, J.M., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–423 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  77. Myers, R.H., Montgomery, D.C.: Response Surface Methodology: Process and Product in Optimization Using Designed Experiments. Wiley, New York (1995)

    MATH  Google Scholar 

  78. Bjork, K.-M., Lindberg, P.O., Westerlund, T.: Some convexifications in global optimization of problems containing signomial terms. Comput. Chem. Eng. 27(5), 669–679 (2003)

    Article  Google Scholar 

  79. Gramacy, R.B., Lee, H.K.H.: Optimization Under Unknown Constraints. University of Cambridge, Cambridge (2010)

    Google Scholar 

  80. Lin, L.-C., Berger, A., Martin, R., Kim, J., Swisher, J., Jariwala, K., Rycroft, C., Bhown, A., Deem, M., Haranczyk, M., Smit, B.: In silico screening of carbon-capture materials. Nat. Mater. 11(7), 633–641 (2012)

    Article  Google Scholar 

  81. Siriwardane, R.V., Shen, M.-S., Fisher, E.P., Poston, J.A.: Adsorption of \(\text{ CO }_2\) on molecular sieves and activated carbon. Energy Fuels 15(2), 279–284 (2001)

    Article  Google Scholar 

  82. Zhang, J., Webley, P.A., Xiao, P.: Effect of process parameters on power requirements of vacuum swing adsorption technology for \(\text{ CO }_2\) capture from flue gas. Energy Convers. Manag. 49(2), 346–356 (2008)

    Article  Google Scholar 

  83. Drud, A.: CONOPT—a large-scale GRG code. ORSA J. Comput. 6, 207–216 (1992)

    Article  MATH  Google Scholar 

  84. Egea, J.A., Martí, R., Banga, J.R.: An evolutionary method for complex-process optimization. Comput. Oper. Res. 37(2), 315–324 (2010)

    Article  MATH  Google Scholar 

  85. Johnson, S.G.: The NLopt nonlinear-optimization package. http://ab-initio.mit.edu/nlopt

  86. Holmstrom, K., Goran, A.O., Edvall, M.M.: Users Guide for TOMLAB CGO. http://tomopt.com/docs/TOMLAB_CGO.pdf (2008)

Download references

Acknowledgments

The authors acknowledge financial support from the National Science Foundation (CBET-0827907, CBET-1263165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christodoulos A. Floudas.

Appendices

Appendix 1: Model equations

See Tables 11 and 12.

Table 11 NAPDE model equations for PSA process
Table 12 PSA process constrains, operating constraints and cost objective

Appendix 2: Nomenclature

Indices

i :

Component

n :

Packed column

Sets

The set of all components is given as follows: \(i\in I=\{ CO _2,N_2\}\)

Parameters

The following parameters are defined:

F :

Feed flow rate

\(y_{i,f}\) :

Mole fraction of component i in the feed gas

\(T_o\) :

Feed temperature

\(P_f\) :

Feed flow rate

\(u_o\) :

Feed velocity

\(T_a\) :

Outside air temperature

\(y_{i,0}\) :

Initial mole fraction of component i in the bed

\(P_{atm}\) :

Atmospheric pressure

\(K_z\) :

Effective heat conductivity

\(K_w\) :

Thermal heat conductivity of column wall

\(h_{in}\) :

Heat transfer coefficient inside the column

\(h_o\) :

Heat transfer coefficient for outside the column

\(C_{pw}\) :

Specific heat capacity of column wall

\(C_{pg}\) :

Specific heat capacity of gas mixture

\(C_{pa}\) :

Specific heat capacity of adsorbed gas in solid

\(C_{ps}\) :

Specific heat capacity of adsorbent

R :

Gas constant

\(q_s\) :

Saturation capacity

\(b_i^o\) :

Isotherm parameter for component i

\(\Delta U_i\) :

Heat of adsorption for component i

\(\tau _p\) :

Tortuosity factor

\(D_M\) :

Molecular diffusivity of \({ CO }_2 -N_2\,mixture\)

\(D_p \) :

Macropore diffusivity, \(D_p =\frac{D_M }{\tau _p }\)

\(D_L\) :

Axial dispersion coefficient defined by the correlation: \(D_L =0.7D_M +0.5u_o d_p \)

UC :

Unit operating cost

\(d_p\) :

Particle diameter

\(r_p\) :

Particle radius, \(\frac{d_p }{2}\)

\(\rho _w\) :

Density of column

\(\rho _s\) :

Density of solid particle

\(\mu \) :

Gas viscosity

\(\varepsilon _p\) :

Particle porosity

\(\varepsilon \) :

Bed porosity

\(\phi \) :

Annualization factor

\(\alpha \) :

Unit capital cost

\(\beta \) :

Exponent of power cost

\(k_p\) :

Bed permeability defined by the correlation: \(k_p =\frac{d_p^2 }{150}\left( {\frac{\varepsilon }{1-\varepsilon }} \right) ^{2}\)

Variables

We consider the variation both in time and along the column length. To denote this, we define:

l :

Bed length

t :

Time

The following system variables are defined to describe the system:

P(lt):

Pressure

T(lt):

Temperature

\(T_W (l,t)\) :

Column wall temperature

\(u_z (l,t)\) :

Velocity

\(c_i (l,t)\) :

Concentration of component i in the gas phase

\(y_i (l,t)\) :

Mole fraction of component i in the gas phase

\(x_i (l,t)\) :

Fractional loading of component i in the solid phase

\(x_i^*(l,t)\) :

Equilibrium fractional loading of component i in the solid phase

\(k_i (l,t)\) :

Mass transfer coefficient of component i

\(b_i (l,t)\) :

Temperature dependent parameter for component i

\(B_i (l,t)\) :

An isotherm parameter for component i

\(\Delta H_i (l,t)\) :

Change in internal energy for component i

\(\rho _g (l,t)\) :

Density of gas obtained from the ideal gas law

The decision variables for process optimization are as follows:

N :

Number of columns

\(P_{ads}\) :

Highest pressure of the system

L :

Column length

D :

Column diameter

\(P_{bd}\) :

Blowdown pressure

\(P_{evac}\) :

Evacuation pressure

\(t_{pr}\) :

Duration of the pressurization step, 20

\(\hbox {s}t_{ads}\) :

Duration of the adsorption step

\(t_{bd}\) :

Duration of the blowdown step

\(t_{evac}\) :

Duration of the evacuation step

Variable scaling

The model is described in terms of these dimensionless variables:

$$\begin{aligned}&\overline{{P}}=\frac{P}{P_{ads} }; \quad \overline{{P}}_{evac} =\frac{P_{evac} }{P_{ads} }; \quad \overline{{P}}_{bd} =\frac{P_{bd} }{P_{ads} }; \quad \overline{{T}}=\frac{T}{T_0 }; \quad \overline{{T}}_w =\frac{T_w }{T_0 }; \quad \overline{{T}}_a =\frac{T_a }{T_0 }; \quad \\&x_i =\frac{\overline{{q}}_i }{q_s };\quad x_i^*=\frac{q_i^*}{q_s };\quad \overline{{u}}_z =\frac{u_z }{u_0 }; \quad Z=\frac{l}{L};\quad \tau =\frac{tu_o }{L} \end{aligned}$$

We also need appropriate boundary and initial conditions to describe the four steps, since they are different for different steps. These are defined subsequently.

Initial and boundary conditions

Pressurization The initial conditions for the first pressurization step are given by the following equation:

$$\begin{aligned} y_i= & {} y_{i,0} \\ \overline{{P}}= & {} \overline{{P}}_{evac} \\ \overline{{T}}= & {} 1 \\ x_i= & {} \left. {x_i^*} \right| _{y_{i,0} } \end{aligned}$$

In a 4-step cyclic process, the initial conditions for each subsequent step are the final conditions of the previous step, so initial conditions are not specified for the remaining steps.

Let \(\hbox {Z} = 0^{+}\) and \(\hbox {Z} = 1^{-}\) be the two ends of an adsorption column where the boundary conditions must be applied. The boundary conditions at \(\hbox {Z} = 0^{+}\) for the pressurization step are as follows:

$$\begin{aligned}&\displaystyle \frac{1}{Pe}\frac{\partial y_i }{\partial Z}=-\overline{{u}}_z (y_{i,f} -y_i ) \\&\displaystyle \frac{1}{Pe_H }\frac{\partial \overline{{T}}}{\partial Z}=-\overline{{u}}_z (1-\overline{{T}}) \\&\displaystyle \overline{{T}}_w =\overline{{T}}_a \\&\displaystyle \overline{{P}}=f\left( \tau \right) ;\quad \overline{{P}}_{evac} \rightarrow 1 \\ \end{aligned}$$

The boundary conditions at \(\hbox {Z} = 1^{-}\) are:

$$\begin{aligned}&\displaystyle \frac{\partial y_i }{\partial Z}=0 \\&\displaystyle \frac{\partial \overline{{T}}}{\partial Z}=0 \\&\displaystyle \overline{{T}}_w =\overline{{T}}_a \\&\displaystyle \frac{\partial \overline{{P}}}{\partial Z}=0 \end{aligned}$$

Adsorption The boundary conditions at \(\hbox {Z}= 0^{+}\) and \(\hbox {Z}= 1^{-}\) for the adsorption step are the following:

$$\begin{aligned}&\displaystyle \frac{\partial y_i }{\partial Z}=-Pe(y_{i,f} -y_i ) \\&\displaystyle \frac{1}{Pe_H }\frac{\partial \overline{{T}}}{\partial Z}=-(1-\overline{{T}}) \\&\displaystyle \overline{{T}}_w =\overline{{T}}_a \\&\displaystyle \overline{{P}}=1+\frac{\Delta }{P_{ads} } \\&\displaystyle \frac{\partial y_i }{\partial Z}=0 \\&\displaystyle \frac{\partial \overline{{T}}}{\partial Z}=0 \\&\displaystyle \overline{{T}}_w =\overline{{T}}_a \\&\displaystyle \overline{{P}}=1 \end{aligned}$$

where \(Pe_H =\frac{\varepsilon u_o L\rho _g C_{pg} }{K_z }\)

Blowdown The boundary conditions at \(\hbox {Z} = 0^{+}\) and \(\hbox {Z} = 1^{-}\) for the blowdown step are given by:

$$\begin{aligned}&\displaystyle \frac{\partial y_i }{\partial Z}=0 \\&\displaystyle \frac{\partial \overline{{T}}}{\partial Z}=0 \\&\displaystyle \overline{{T}}_w =\overline{{T}}_a \\&\displaystyle \frac{\partial \overline{{P}}}{\partial Z}=0 \\&\displaystyle \frac{\partial y_i }{\partial Z}=0 \\&\displaystyle \frac{\partial \overline{{T}}}{\partial Z}=0 \\&\displaystyle \overline{{T}}_w =\overline{{T}}_a \\&\displaystyle \overline{{P}}=f(\tau ){:}~1\rightarrow \overline{{P}}_{bd} \end{aligned}$$

Evacuation The boundary conditions at \(\hbox {Z} = 0^{+}\) and \(\hbox {Z} = 1^{-}\) for the evacuation step are:

$$\begin{aligned}&\displaystyle \frac{\partial y_i }{\partial Z}=0 \\&\displaystyle \frac{\partial \overline{{T}}}{\partial Z}=0 \\&\displaystyle \overline{{T}}_w =\overline{{T}}_a \\&\displaystyle \frac{\partial \overline{{P}}}{\partial Z}=0 \\&\displaystyle \frac{\partial y_i }{\partial Z}=0 \\&\displaystyle \frac{\partial \overline{{T}}}{\partial Z}=0 \\&\displaystyle \overline{{T}}_w =\overline{{T}}_a \\&\displaystyle \overline{{P}}=f(\tau ):\overline{{P}}_{bd} \rightarrow \overline{{P}}_{evac} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukouvala, F., Hasan, M.M.F. & Floudas, C.A. Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption. J Glob Optim 67, 3–42 (2017). https://doi.org/10.1007/s10898-015-0376-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0376-2

Keywords

Navigation