Skip to main content
Log in

Duality related to approximate proper solutions of vector optimization problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this work we introduce two approximate duality approaches for vector optimization problems. The first one by means of approximate solutions of a scalar Lagrangian, and the second one by considering \((C,\varepsilon )\)-proper efficient solutions of a recently introduced set-valued vector Lagrangian. In both approaches we obtain weak and strong duality results for \((C,\varepsilon )\)-proper efficient solutions of the primal problem, under generalized convexity assumptions. Due to the suitable limit behaviour of the \((C,\varepsilon )\)-proper efficient solutions when the error \(\varepsilon \) tends to zero, the obtained duality results extend and improve several others in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boţ, R.I., Grad, S.-M.: Duality for vector optimization problems via a general scalarization. Optimization 60, 1269–1290 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boţ, R.I., Grad, S.-M., Wanka, G.: Duality in Vector Optimization. Springer, Berlin (2009)

    MATH  Google Scholar 

  3. Boţ, R.I., Wanka, G.: An analysis of some dual problems in multiobjective optimization (I). Optimization 53, 281–300 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boţ, R.I., Wanka, G.: An analysis of some dual problems in multiobjective optimization (II). Optimization 53, 301–324 (2004)

    Article  Google Scholar 

  5. Dutta, J., Vetrivel, V.: On approximate minima in vector optimization. Numer. Funct. Anal. Optim. 22, 845–859 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)

    MATH  Google Scholar 

  7. Göpfert, A., Riahi, H., Tammer, C., Zălinescu, C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)

    MATH  Google Scholar 

  8. Gutiérrez, C., Huerga, L., Jiménez, B., Novo, V.: Proper approximate solutions and \(\varepsilon \)-subdifferentials in vector optimization: basic properties and limit behaviour. Nonlinear Anal. 79, 52–67 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gutiérrez, C., Huerga, L., Jiménez, B., Novo, V.: Proper approximate solutions and \(\varepsilon \)-subdifferentials in vector optimization: Moreau–Rockafellar type theorems. J. Convex Anal. 21, 857–886 (2014)

    MATH  MathSciNet  Google Scholar 

  10. Gutiérrez, C., Huerga, L., Novo, V.: Scalarization and saddle points of approximate proper solutions in nearly subconvexlike vector optimization problems. J. Math. Anal. Appl. 389, 1046–1058 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gutiérrez, C., Jiménez, B., Novo, V.: Multiplier rules and saddle-point theorems for Helbig’s approximate solutions in convex Pareto problems. J. Glob. Optim. 32, 367–383 (2005)

  12. Gutiérrez, C., Jiménez, B., Novo, V.: On approximate efficiency in multiobjective programming. Math. Methods Oper. Res. 64, 165–185 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gutiérrez, C., Jiménez, B., Novo, V.: A unified approach and optimality conditions for approximate solutions of vector optimization problems. SIAM J. Optim. 17, 688–710 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gutiérrez, C., Jiménez, B., Novo, V.: A generic approach to approximate efficiency and applications to vector optimization with set-valued maps. J. Glob. Optim. 49, 313–342 (2011)

    Article  MATH  Google Scholar 

  15. Jahn, J.: Duality in vector optimization. Math. Program. 25, 343–353 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jahn, J.: Vector Optimization. Theory, Applications and Extensions. Springer, Berlin (2011)

    MATH  Google Scholar 

  17. Jia, J.-H., Li, Z.-F.: \(\varepsilon \)-Conjugate maps and \(\varepsilon \)-conjugate duality in vector optimization with set-valued maps. Optimization 57, 621–633 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kutateladze, S.S.: Convex \(\varepsilon \)-programming. Soviet Math. Dokl. 20, 391–393 (1979)

    MATH  Google Scholar 

  19. Lemaire, B.: Approximation in multiobjective optimization. J. Glob. Optim. 2, 117–132 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Li, Z.F.: Benson proper efficiency in the vector optimization of set-valued maps. J. Optim. Theory Appl. 98, 623–649 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Luc, D.T.: On duality theory in multiobjective programming. J. Optim. Theory Appl. 43, 557–582 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. El Maghri, M.: Pareto-Fenchel \(\varepsilon \)-subdifferential sum rule and \(\varepsilon \)-efficiency. Optim. Lett. 6, 763–781 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. El Maghri, M.: (\(\varepsilon \)-)Efficiency in difference vector optimization. J. Glob. Optim. 61, 803–812 (2015)

    Article  Google Scholar 

  24. Qiu, J.H.: Dual characterization and scalarization for Benson proper efficiency. SIAM J. Optim. 19, 144–162 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rong, W.D., Wu, Y.N.: \(\varepsilon \)-Weak minimal solutions of vector optimization problems with set-valued maps. J. Optim. Theory Appl. 106, 569–579 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sach, P.H., Tuan, L.A., Minh, N.B.: Approximate duality for vector quasi-equilibrium problems and applications. Nonlinear Anal. 72, 3994–4004 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Son, T.Q., Kim, D.S.: \(\varepsilon \)-Mixed type duality for nonconvex multiobjective programs with an infinite number of constraints. J. Glob. Optim. 57, 447–465 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tanino, T., Sawaragi, Y.: Duality theory in multiobjective programming. J. Optim. Theory Appl. 27, 509–529 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  29. Vályi, I.: Approximate saddle-point theorems in vector optimization. J. Optim. Theory Appl. 55, 435–448 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  30. Yang, X.M., Li, D., Wang, S.Y.: Near-subconvexlikeness in vector optimization with set-valued functions. J. Optim. Theory Appl. 110, 413–427 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Ministerio de Economía y Competitividad (Spain) under project MTM2012-30942. The authors are very grateful to the anonymous referees for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Novo.

Additional information

L. Huerga: Researcher of Spanish FPI Fellowship Programme (BES-2010-033742).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez, C., Huerga, L., Novo, V. et al. Duality related to approximate proper solutions of vector optimization problems. J Glob Optim 64, 117–139 (2016). https://doi.org/10.1007/s10898-015-0366-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0366-4

Keywords

Mathematics Subject Classification

Navigation