Skip to main content
Log in

Variable-fidelity modeling of structural analysis of assemblies

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper deals with the advantages of using variable-fidelity metamodeling strategies in order to develop a valid metamodel more rapidly than by using traditional methods. In our mechanical assembly design, we use the term “variable-fidelity” in reference to the convergence (or accuracy) level of the iterative solver being used. Variable-fidelity metamodeling is a way to improve the prediction of the output of a complex system by incorporating rapidly available auxiliary lower-fidelity data. This work uses two fidelity levels, but more levels can be added. The LATIN iterative algorithm is used along with a “multiparametric” strategy to calculate the various data and their different fidelity levels by means of an error indicator. Three main categories of variable-fidelity strategies are currently available. We tested at least one method from each of these categories, which comes to a total of five methods for calculating a valid metamodel using low- and high-fidelity data. Here, our objective is to compare the performances of these five methods in solving three mechanical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

Abbreviations

\({{\mathcal {D}}}\) :

The design space

n :

The dimension of \({{\mathcal {D}}}\)

\(\mathbf{x } ^{i}\) :

A point \(\in {{\mathcal {D}}}\)

\(y(\mathbf{x } )\) :

The objective function at point \(\mathbf{x } \)

\(\hat{y}(\mathbf{x } )\) :

An approximation of the objective function at point \(\mathbf{x } \) obtained through a metamodel

\(\mathbf X \) :

The matrix of all the calculated points \(\mathbf X =\left[ \begin{array}{ccc} {\mathbf{x } }^{1}&\cdots&{\mathbf{x } }^{p} \end{array} \right] ^{T} \)

\(y^{i}\) :

The objective function at point \(\mathbf{x } ^{i}\)

\(\mathbf Y \) :

The vector of all the objective function \(\mathbf Y =\left[ \begin{array}{ccc} y^{1}&\cdots&y^{p} \end{array} \right] ^{T} \)

\(\bullet _{fcv}\) :

Any of the above in the case of fully converged data

\(\bullet _{pcv}\) :

Any of the above in the case of partially converged data

\(\mathbf{f } (\mathbf{x } )\) :

The regression function. \(\Big (\)If one chooses a mean regression, \(\mathbf{f } (\mathbf{x } )=1\); for a linear regression, \(\mathbf{f } (\mathbf{x } )=\left[ \begin{array}{cccc} 1&x_{1}&\cdots&x_{n} \end{array} \right] ^{T}\Big )\)

\(\varvec{\beta }\) :

The parameters of the regression function. \(\Big (\)For a linear regression, \(\varvec{\beta }=\left[ \begin{array}{ccc} \beta _{1}&\cdots&\beta _{n+1} \end{array} \right] ^{T} \Big )\)

\(\mathbf F = \left[ \begin{array}{ccc}{\mathbf{f } }({\mathbf{x } }^{1})&\cdots&{\mathbf{f } }({\mathbf{x } }^{p})\end{array}\right] ^{T}\) :

The matrix of the regression functions at the calculation points (for universal kriging case)

\(z(\mathbf{x } )\) :

A stochastic function

\(\mathbf Z \) :

The stochastic vector of the calculated approximations \(\mathbf Z =\left[ \begin{array}{ccc} z(\mathbf{x } ^{1})&\cdots&z(\mathbf{x } ^{p}) \end{array} \right] ^{T} \)

\(\mathbf{C } \) :

The covariance matrix

\(\mathbf R \) :

The correlation matrix

References

  1. Jones, D.R.: A taxonomy of global optimization methods based on response surface. J. Glob. Optim. 21, 345–383 (2001)

    Article  MATH  Google Scholar 

  2. Robinson, T.D., Eldred, M.R., Willcox, K.E., Haimes, R.: Surrogate-based optimization using multifidelity models with variable parametrization and corrected space mapping. AIAA J. 46, 2814–2822 (2008)

    Article  Google Scholar 

  3. Courrier, N., Boucard, P.-A., Soulier, B.: The use of partially converged simulations in building surrogate models. Adv. Eng. Softw. 67, 186–197 (2014)

    Article  Google Scholar 

  4. Chinesta, F., Ammar, A., Cueto, E.: Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch. Comput. Methods Eng. 17, 327–350 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chinesta, F., Ladeveze, P., Cueto, E.: A short review on model order reduction based on proper generalized decomposition. Arch. Comput. Methods Eng. 18(4), 395–404 (2011)

    Article  Google Scholar 

  6. Lamari, H., Chinesta, F., Ammar, A., Cuesto, E.: Nonconventional numerical strategies in the advanced simulation of materials and processes. Int. J. Mod. Manuf. Technol. 1, 49–56 (2009)

    Google Scholar 

  7. Pruliere, E., Chinesta, F., Ammar, A.: On the deterministic solution of multidimensional parametric models using the proper generalized decomposition. Math. Comput. Simul. 81, 791–810 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Heyberger, C., Boucard, P.-A., Neron, D.: Multiparametric analysis within the proper generalized decomposition framework. Comput. Mech. 49, 277–289 (2012)

    Article  MATH  Google Scholar 

  9. Gano, S.E., Renaud, J.E., Martin, J.D., Simpson, T.W.: Update strategies for kriging models used in variable fidelity optimization. Struct. Multidiscipl. Optim. 32(4), 287–298 (2006)

    Article  Google Scholar 

  10. Vitali, R., Haftka, R.T., Sankar, B.V.: Multi-fidelity design of stiffened composite panel with a crack. Struct. Multidiscipl. Optim. 23(5), 347–356 (2002)

    Article  Google Scholar 

  11. Knill, D.L., Giunta, A.A., Baker, C.A., Grossman, B., Mason, W.H., Haftka, R.T., Watson, L.T.: Response surface model combining linear and euler aerodynamics for super sonic transport design. J. Aircr. 36(1), 75–86 (1999)

    Article  Google Scholar 

  12. Forrester, A.I.J., Bressloff, N.W., Keane, A.J.: Optimization using surrogate models and partially converged computational fluid dynamics simulations. Proc. R. Soc. A 462, 2177–2204 (2006)

    Article  MATH  Google Scholar 

  13. Dadone, A., Grossman, B.: Progressive optimization of inverse fluid dynamic design problems. Comput. Fluids 29, 1–32 (2000)

    Article  MATH  Google Scholar 

  14. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13, 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krige, D.G.: A statistical approach to some mine valuation and allied problems on the witwatersrand. Master’s thesis, University of the Witwatersrand (1951)

  16. Matheron, G.: Principles of geostatics. Econ. Geol. 58(8), 1246–1266 (1963)

    Article  Google Scholar 

  17. Laurent, L., Boucard, P.-A., Soulier, B.: A dedicated multiparametric strategy for the fast construction of a cokriging metamodel. Comput. Struct. 124, 61–73 (2013)

    Article  Google Scholar 

  18. Morris, M.D., Mitchell, T.J., Ylvisaker, D.: Bayesian desing and analysis of computer experiments: use of derivatives in surface prediction. Technometrics 35(3), 243–255 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Koehler, J., Owen, A.: Computer experiments. Handb. Stat. 13, 261–308 (1996)

    Article  MathSciNet  Google Scholar 

  20. Praveen, C., Duvigneau, R.: Radial basis function and kriging metamodels for aerodynamic optimization. Technical report 6151 INRIA (2007)

  21. Buhmann, M.D.: Radial basis functions. Acta Numer. 9, 1–38 (2000)

    Article  MathSciNet  Google Scholar 

  22. Zimmermann, R., Han, Z.-H.: Simplified cross-correlation estimation for multi-fidelity surrogate cokriging models. Adv. Appl. Math. Sci. 7(2), 181–201 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Han, Z.-H., Zimmermann, R., Görtz, S.: Alternative cokriging model for variable-fidelity surrogate modeling. AIAA J. 50(5), 1205–1210 (2012)

    Article  Google Scholar 

  24. Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45, 50–79 (2009)

    Article  Google Scholar 

  25. Rosenbaum, B., Schulz, V.: Efficient response surface method based on generic surrogate models. SIAM J. Sci. Comput. 35(2), B529–B550 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Han, Z.-H., Görtz, S., Zimmermann, R.: Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function. Aerosp. Sci. Technol. 25(1), 177–189 (2013)

    Article  Google Scholar 

  27. Forrester, A.I.J., Sobester, A., Keane, A.J.: Multi-fidelity optimization via surrogate modelling. Proc. R. Soc. A 463, 3251–3269 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yamazaki, W., Mavriplis, D.J.: Derivative-enhanced variable fidelity surrogate modeling for aerodynamic functions. AIAA J. 51(1), 126–137 (2013)

    Article  Google Scholar 

  29. Rosenbaum, B.: Efficient global surrogate models for responses of expensive simulations. PhD thesis, Universität Trier (2013)

  30. Han, Z.-H., Görtz, S.: A hierarchical kriging model for variable-fidelity surrogate modeling of aerodynamic functions. AIAA J. 50(9), 1885–1896 (2012)

    Article  Google Scholar 

  31. Ladevèze, Pierre: Nonlinear computational structural mechanics: new approaches and non-incremental methods of calculation. Mechanical Engineering Series. Springer, Berlin (1999)

    Book  Google Scholar 

  32. Wachernagel, P.: Multivariate geostatics: an introduction with applications. Springer, Berlin (2003)

    Book  Google Scholar 

  33. Soulier, B., Boucard, P.-A.: A multiparametric strategy for the two step optimization of structural assemblies. Struct. Multidiscipl. Optim. 47(4), 539–553 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Boucard, P.-A., Ladevèze, P.: A multiple solution method for non-linear structural mechanics. Mech. Eng. 50(5), 317–328 (1999)

    Google Scholar 

  35. Soulier, B., Boucard, P.-A.: A multiparametric strategy for the large-scale multilevel optimization of structural assemblies. In: 8th World Congress on Structural and Multidisciplinary Optimization, Lisbon, Portugal (2009)

  36. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4, 409–423 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  37. Han, Z.-H., Zimmermann, R., Görtz, S.: A new cokriging method for variable-fidelity surrogate modeling of aerodynamic data. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL (2010). AIAA 2010-1225

  38. Kennedy, M.C., O’Hagan, A.: Predicting the output from a complex computer code when fast approximations are available. Biometrika 87(1), 1–13 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Han, Z.-H., Görtz, S., Hain, R.: A variable-fidelity modeling method for aero-loads prediction. New Results Numer. Exp. Fluid Mech. VII 112, 17–25 (2010)

    Article  Google Scholar 

  40. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  41. Morris, M.D., Mitchell, T.J.: Exploratory designs for computational experiments. J. Stat. Plan. Interf. 43(3), 381–402 (1995)

    Article  MATH  Google Scholar 

  42. Lawrence, I., Lin, K.: A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255–268 (1989)

    Article  MATH  Google Scholar 

  43. Edwards, A.L.: An introduction to linear regression and correlation. W.H.Freeman, New York (1976)

    Google Scholar 

  44. Forrester, A.I.J.: Efficient global aerodynamic optimisation using expensive computational fluid dynamics simulations. PhD thesis, University of Southampton, School of Engineering Sciences, Southampton, England (2004)

  45. Huang, D., Allen, T.T., Notz, W.I., Miller, R.A.: Sequential kriging optimization using multiple-fidelity evaluations. Struct. Multidiscipl. Optim. 32(5), 369–382 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Courrier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Courrier, N., Boucard, PA. & Soulier, B. Variable-fidelity modeling of structural analysis of assemblies. J Glob Optim 64, 577–613 (2016). https://doi.org/10.1007/s10898-015-0345-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0345-9

Keywords

Navigation