Skip to main content
Log in

Interiors of completely positive cones

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A symmetric matrix A is completely positive (CP) if there exists an entrywise nonnegative matrix B such that \(A = BB^T\). We characterize the interior of the CP cone. A semidefinite algorithm is proposed for checking whether a matrix is in the interior of the CP cone, and its properties are studied. A CP-decomposition of a matrix in Dickinson’s form can be obtained if it is an interior of the CP cone. Some computational experiments are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anstreicher, K.M., Burer, S., Dickinson, P.J.C.: An algorithm for computing the cp-factorization of a completely positive matrix. In: Construction (2012)

  2. Berman, A.: Cones, Matrices and Mathematical Programming. Lecture Notes in Economics and Mathematical Systems, vol. 79. Springer, Berlin (1973)

  3. Berman, A., Shaked-Monderer, N.: Completely Positive Matrices. World Scientific, New Jersey (2003)

    Book  MATH  Google Scholar 

  4. Bomze, I.M., de Klerk, E.: Solving standard quadratic optimization problems via linear, semidenite and copositive programming. J. Glob. Optim. 24, 163–185 (2002)

    Article  MATH  Google Scholar 

  5. Bomze, I.M., Dür, M., de Klerk, E., Roos, C., Quist, A.J., Terlaky, T.: On copositive programming and standard quadratic optimization problems. J. Glob. Optim. 18, 301–320 (2000)

    Article  MATH  Google Scholar 

  6. Bomze, I.M.: Copositive optimization-recent developments and applications. Eur. J. Oper. Res. 216, 509–520 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. Ser. A 120, 479–495 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cops: http://mcs.anl.gov/~more/cops/

  9. Curto, R., Fialkow, L.: Truncated K-moment problems in several variables. J. Operator Theory 54, 189–226 (2005)

    MATH  MathSciNet  Google Scholar 

  10. de Klerk, E., Pasechnik, D.V.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12, 875–892 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dickinson, P.J.C., Dür, M.: Linear-time complete positivity detection and decomposition of sparse matrices. SIAM J. Matrix Anal. Appl. 33, 701–720 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dickinson, P.J.C., Gijben, L.: On the computational complexity of membership problems for the completely positive cone and its dual. Comput. Optim. Appl. 57, 403–415 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dickinson, P.J.C.: An improved characterisation of the interior of the completely positive cone. Electron. J. Linear Algebra 20, 723–729 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dür, M.: Copositive Programming: A Survey. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent Advances in Optimization and its Applications in Engineering, pp. 3–20. Springer, New York (2010)

    Chapter  Google Scholar 

  16. Dür, M., Still, G.: Interior points of the completely positive cone. Electron. J. Linear Algebra 17, 48–53 (2008)

    MATH  MathSciNet  Google Scholar 

  17. Fialkow, L., Nie, J.: The truncated moment problem via homogenization and flat extensions. J. Funct. Anal. 263, 1682–1700 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hall Jr, M.: Combinatorial Theory. Blaisdell Publishing Co., Boston (1967)

    MATH  Google Scholar 

  19. Helton, J.W., Nie, J.: A semidefinite approach for truncated K-moment problems. Found. Comput. Math. 12, 851–881 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Henrion, D., Lasserre, J.: Detecting global optimality and extracting solutions in GloptiPoly, positive polynomials in control. In: Lecture Notes in Control and Information Science, vol. 312, pp. 293–310. Springer, Berlin (2005)

  21. Henrion, D., Lasserre, J., Loefberg, J.: GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24, 761–779 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lasserre, J.B.: Moments, Positive Polynomials and Their Applications. Imperial College Press, London (2009)

    Book  Google Scholar 

  23. Lasserre, J.B.: New approximations for the cone of copositive matrices and its dual. Math. Program. Ser. A 144, 265–276 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, vol. 149 of IMA Volumes in Mathematics and its Applications, pp. 157–270. Springer, Berlin (2009)

  25. Nie, J.: The \(\cal {A}\)-truncated K-moment problem. Found. Comput. Math. 14, 1243–1276 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  26. Nie, J.: Linear optimization with cones of moments and nonnegative polynomials. Math. Program. Ser. B (2014). doi:10.1007/s10107-014-0797-6

  27. Nie, J.: Optimality conditions and finite convergence of Lasserres hierarchy. Math. Program. Ser. A 146, 97–121 (2014)

    Article  MATH  Google Scholar 

  28. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization, Ph.D. dissertation, California Institute of Technology (2000)

  29. Peña, J., Vera, J., Zuluaga, L.: Computing the stability number of a graph via linear and semidenite programming. SIAM J. Optim. 18, 87–105 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Shaked-Monderer, N., Bomze, I.M., Jarre, F., Schachinger, W.: On the cp-rank and the minimal cp factorization of a completely positive matrix. SIAM J. Matrix Anal. Appl. 34, 355–368 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sponsel, J., Dür, M.: Factorization and cutting planes for completely positive matrices by copositive projection. Math. Program. Ser. A 143, 211–229 (2014)

    Article  MATH  Google Scholar 

  32. Sturm, J.F.: SeDuMi 1.02: a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11 & 12, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  33. Zhou, Anwa, Fan, Jinyan: The CP-matrix completion problem. SIAM J. Matrix Anal. Appl. 35, 127–142 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the referees for their valuable and constructive comments and advices, especially for suggesting Theorem 2.1 and some random examples, which have greatly improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyan Fan.

Additional information

Jinyan Fan: The work is partially supported by NSFC 11171217.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, A., Fan, J. Interiors of completely positive cones. J Glob Optim 63, 653–675 (2015). https://doi.org/10.1007/s10898-015-0309-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0309-0

Keywords

Mathematics Subject Classification

Navigation