Skip to main content
Log in

On the existence of saddle points for nonlinear second-order cone programming problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we study the existence of local and global saddle points for nonlinear second-order cone programming problems. The existence of local saddle points is developed by using the second-order sufficient conditions, in which a sigma-term is added to reflect the curvature of second-order cone. Furthermore, by dealing with the perturbation of the primal problem, we establish the existence of global saddle points, which can be applicable for the case of multiple optimal solutions. The close relationship between global saddle points and exact penalty representations are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonnans, J.F., Ramirez, H.: Perturbation analysis of second-order cone programming problems. Math. Program. 104, 205–227 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bonnans, J.F., Cominetti, R., Shapiro, A.: Sensitivity analysis of optimization problems under second order regular constraints. Math. Oper. Res. 23, 806–831 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bonnans, J.F., Cominetti, R., Shapiro, A.: Second order optimality conditions based on parabolic second order tangent sets. SIAM J. Optim. 9, 466–492 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  MATH  Google Scholar 

  5. Floudas, C.A., Jongen, H.T.: Global optimization: local minima and transition points. J. Glob. Optim. 32, 409–415 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Huang, X.-X., Yang, X.-Q.: A unified augmented Lagrangian approach to duality and exact penalization. Math. Oper. Res. 28, 524–532 (2003)

    Article  MathSciNet  Google Scholar 

  7. Li, D., Sun, X.-L.: Convexification and existence of saddle point in a pth-power reformulation for nonconvex constrained optimization. Nonlinear Anal. 47, 5611–5622 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Li, D., Sun, X.-L.: Existence of a saddle point in nonconvex constrained optimization. J. Glob. Optim. 21, 39–50 (2001)

    Article  MATH  Google Scholar 

  9. Liu, Y.-J., Zhang, L.-W.: Convergence of the augmented Lagrangian method for nonlinear optimization problems over second-order cones. J. Optim. Theory Appl. 139, 557–575 (2008)

    Article  MathSciNet  Google Scholar 

  10. Luo, H.-Z., Mastroeni, G., Wu, H.-X.: Separation approach for augmented Lagrangians in constrained nonconvex optimization. J. Optim. Theory Appl. 144, 275–290 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  12. Rockafellar, R.T.: Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM J. Control Optim. 12, 268–285 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rockafellar, R.T., Wets, R.J.: Variational Analysis. Springer, New York (1998)

    Book  MATH  Google Scholar 

  14. Rubinov, A.M., Huang, X.X., Yang, X.Q.: The zero duality gap property and lower semicontinuity of the perturbation function. Math. Oper. Res. 27, 775–791 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Shapiro, A., Sun, J.: Some properties of the augmented Lagrangian in cone constrained optimization. Math. Oper. Res. 29, 479–491 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sun, X.-L., Li, D., Mckinnon, K.I.M.: On saddle points of augmented Lagrangians for constrained nonconvex optimization. SIAM J. Optim. 15, 1128–1146 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wang, C.-Y., Zhou, J.-C., Xu, X.-H.: Saddle points theory of two classes of augmented Lagrangians and its applications to generalized semi-infinite programming. Appl. Math. Optim. 59, 413–434 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wu, H.-X., Luo, H.-Z.: A note on the existence of saddle points of p-th power Lagrangian for constrained nonconvex optimization. Optimization 61, 1331–1345 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wu, H.-X., Luo, H.-Z.: Saddle points of general augmented Lagrangians for constrained nonconvex optimization. J. Glob. Optim. 53, 683–697 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang, L.-W., Gu, J., Xiao, X.-T.: A class of nonlinear Lagrangians for nonconvex second order cone programming. Comput. Optim. Appl. 49, 61–99 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zhou, Y.-Y., Yang, X.-Q.: Some results about duality and exact penalization. J. Glob. Optim. 29, 497–509 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zlobec, S.: Saddle-point optimality: a look beyond convexity. J. Glob. Optim. 29, 97–112 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are gratefully indebted to anonymous referees for their valuable suggestions that help us to essentially improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jein-Shan Chen.

Additional information

The author’s work is supported by National Natural Science Foundation of China (11101248, 11171247, 11271233), Shandong Province Natural Science Foundation (ZR2010AQ026, ZR2012AM016), and Young Teacher Support Program of Shandong University of Technology. Jein-Shan Chen work is supported by Ministry of Science and Technology, Taiwan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Chen, JS. On the existence of saddle points for nonlinear second-order cone programming problems. J Glob Optim 62, 459–480 (2015). https://doi.org/10.1007/s10898-014-0252-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0252-5

Keywords

Mathematics Subject Classification

Navigation