Skip to main content
Log in

Global solutions to nonconvex optimization of 4th-order polynomial and log-sum-exp functions

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper presents a canonical dual approach for solving a nonconvex global optimization problem governed by a sum of 4th-order polynomial and a log-sum-exp function. Such a problem arises extensively in engineering and sciences. Based on the canonical duality–triality theory, this nonconvex problem is transformed to an equivalent dual problem, which can be solved easily under certain conditions. We proved that both global minimizer and the biggest local extrema of the primal problem can be obtained analytically from the canonical dual solutions. As two special cases, a quartic polynomial minimization and a minimax problem are discussed. Existence conditions are derived, which can be used to classify easy and relative hard instances. Applications are illustrated by several nonconvex and nonsmooth examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We use the same definition of the neighborhood as defined in [15] (Note 1 on page 306), i.e., a subset \(\mathcal{X}_0\) is said to be the neighborhood of the critical point \(\bar{\varvec{x}}\) if \(\bar{\varvec{x}}\) is the only critical point in \(\mathcal{X}_0\).

References

  1. Abdi, H., Nahavandi, S.: Designing optimal fault tolerant jacobian for robotic manipulators. In: IEEE Conf. AIM, pp. 426–431 (2010)

  2. Abdi, H., Nahavandi, S., Maciejewski, A.: Optimal fault-tolerant Jacobian matrix generators for redundant manipulators. In: IEEE Int. Conf. Robot., pp. 4688–4693 (2011)

  3. Banichuk, N.: Minimax approach to structural optimization problems. J. Optim. Theory Appl. 20, 111–127 (1976)

    Article  MathSciNet  Google Scholar 

  4. Boyd, S., Kim, S., Vandenberghe, L., Hassibi, A.: A tutorial on geometric programming. Optim. Eng. 8, 67–127 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  6. Chen, Y., Gao, D.: Global solutions of quadratic problems with sphere constraint via canonical dual approach. arXiv:1308.4450 (2013)

  7. Chiang, M.: Geometric Programming for Communication Systems. Now Publishers Inc, Hanover (2005)

    MATH  Google Scholar 

  8. Chiang, M., Boyd, S.: Geometric programming duals of channel capacity and rate distortion. IEEE Trans. Inf. Theory 50, 245–258 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chiang, M., Tan, C., Palomar, D., O’Neill, D., Julian, D.: Power control by geometric programming. IEEE Trans. Wirel. Commun. 6, 2640–2651 (2007)

    Article  Google Scholar 

  10. Fang, S., Gao, D., Sheu, R., Wu, S.: Canonical dual approach to solving 0–1 quadratic programming problems. J. Ind. Manag. Optim. 4, 125–142 (2008)

    Article  MathSciNet  Google Scholar 

  11. Gao, D.: Minimax and triality theory in nonsmooth variational problems. In: Fukushima, M., Liqun, Qi. (eds.) Reformulation-Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, pp. 161–180 (1998)

  12. Gao, D.: Canonical dual transformation method and generalized triality theory in nonsmooth global optimization. J. Global Optim. 17, 127–160 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao, D.: Duality principles in nonconvex systems: theory, methods, and applications. Springer, Netherlands (2000)

    Book  Google Scholar 

  14. Gao, D.: Finite deformation beam models and triality theory in dynamical post-buckling analysis. Int. J. Nonlinear Mech. 35, 103–131 (2000)

    Article  MATH  Google Scholar 

  15. Gao, D.: Nonconvex semi-linear problems and canonical duality solutions. Adv. Mech. Math. 2, 261–312 (2003)

    Article  Google Scholar 

  16. Gao, D.: Canonical duality theory and solutions to constrained nonconvex quadratic programming. J. Global Optim. 29, 377–399 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gao, D.: Complete solutions and extremality criteria to polynomial optimization problems. J. Global Optim. 35, 131–143 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gao, D., Ruan, N.: Solutions to quadratic minimization problems with box and integer constraints. J. Global Optim. 47, 463–484 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gao, D., Ruan, N., Pardalos, P.: Canonical dual solutions to sum of fourth-order polynomials minimization problems with applications to sensor network localization. In: Boginski, V. L., Commander, C. W., Pardalos, P. M., Ye, Y. (eds.) Sensors: Theory, Algorithms, and Applications. Springer, Berlin, pp. 37–54 (2012)

  20. Gao, D., Ruan, N., Sherali, H.: Solutions and optimality criteria for nonconvex constrained global optimization problems with connections between canonical and Lagrangian duality. J. Global Optim. 45, 473–497 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gao, D., Ruan, N., Sherali, H.: Canonical dual solutions for fixed cost quadratic programs. In: Chinchuluun, A., Pardalos, P. M., Enkhbat, R., Tseveendorj, I. (eds.) Optimization and Optimal Control. Springer, Berlin, pp. 139–156 (2010)

  22. Gao, D., Watson, L., Easterling, D., Thacker, W., Billups, S.: Solving the canonical dual of box- and integer-constrained nonconvex quadratic programs via a deterministic direct search algorithm. Optim. Methods Softw. 26(1), 1–14 (2011)

  23. Gao, D., Wu, C.: On the triality theory for a quartic polynomial optimization problem. J. Ind. Manag. Optim. 8, 229–242 (2012)

    Article  MathSciNet  Google Scholar 

  24. Kiwiel, K.: Methods of Descent for Nondifferentiable Optimization. Springer, Berlin (1985)

    MATH  Google Scholar 

  25. Pee, E., Royset, J.: On solving large-scale finite minimax problems using exponential smoothing. J. Optim. Theory Appl. 148, 390–421 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Polak, E.: Optimization: Algorithms and Consistent Approximations. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  27. Polak, E., Royset, J., Womersley, R.: Algorithms with adaptive smoothing for finite minimax problems. J. Optim. Theory App. 119, 459–484 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Roberts, R., Yu, H.G. Maciejewski, A.: Characterizing optimally fault-tolerant manipulators based on relative manipulability indices. In IEEE Conf. IROS, pp. 3925–3930 (2007)

  29. Royset, J., Polak, E., Kiureghian, A.: Adaptive approximations and exact penalization for the solution of generalized semi-infinite min-max problems. SIAM J. Optim. 14, 1–34 (2004)

    Article  Google Scholar 

  30. Strang, G.: A minimax problem in plasticity theory. In: Nashed, M. Z. (ed.) Functional Analysis Methods in Numerical Analysis. Springer, Berlin, pp. 319–333 (1979)

  31. Wang, Z., Fang, S., Gao, D., Xing, W.: Canonical dual approach to solving the maximum cut problem. J. Global Optim. 54(2), 341-351 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Chen.

Appendix

Appendix

The following lemma is a generalization of Lemma 6 in [23].

Lemma 7

Suppose that \( \varvec{P}\in \mathbb {R}^{n\times n}\), \( \varvec{U}\in \mathbb {R}^{m\times m}\) and \( \varvec{D}\in \mathbb {R}^{n\times m}\) are given symmetric matrices with

$$\begin{aligned} \varvec{P}=\begin{bmatrix} \varvec{P}_{11}&\quad \! \varvec{P}_{12}\\ \varvec{P}_{21}&\quad \! \varvec{P}_{22} \end{bmatrix} \prec 0, ~~ \varvec{U}=\begin{bmatrix} \varvec{U}_{11}&\quad \! \varvec{0}\\ \varvec{0}&\quad \! \varvec{U}_{22} \end{bmatrix}\succ 0, \,\mathrm{and }\,\varvec{D}=\begin{bmatrix} \varvec{D}_{11}&\quad \! \varvec{0}\\ \varvec{0}&\quad \! \varvec{0} \end{bmatrix}, \end{aligned}$$

where \( \varvec{P}_{11}\), \( \varvec{U}_{11}\) and \( \varvec{D}_{11}\) are \(r\times r\)-dimensional matrices, and \( \varvec{D}_{11}\) is nonsingular. Then,

$$\begin{aligned} \varvec{P}+ \varvec{D}\varvec{U}\varvec{D}^T\preceq 0 \Leftrightarrow - \varvec{D}^T \varvec{P}^{-1} \varvec{D}- \varvec{U}^{-1}\preceq 0. \end{aligned}$$
(46)

Proof

Obviously, \( \varvec{P}+ \varvec{D}\varvec{U}\varvec{D}^T\preceq 0\) is equivalent to

$$\begin{aligned} - \varvec{P}- \varvec{D}\varvec{U}\varvec{D}^T= \begin{bmatrix} - \varvec{P}_{11}- \varvec{D}_{11} \varvec{U}_{11} \varvec{D}_{11}^T&\quad \! - \varvec{P}_{12}\\ - \varvec{P}_{21}&\quad \! - \varvec{P}_{22} \end{bmatrix}\succeq 0. \end{aligned}$$
(47)

By Schur lemma, Eq. (47) is equivalent to

$$\begin{aligned} - \varvec{P}_{11}- \varvec{D}_{11} \varvec{U}_{11} \varvec{D}_{11}^T+ \varvec{P}_{12} \varvec{P}_{22}^{-1} \varvec{P}_{21}\succeq 0 \,\mathrm{and }\,\varvec{P}_{22}\prec 0. \end{aligned}$$
(48)

The inverse of matrix \( \varvec{P}\) is

$$\begin{aligned} \varvec{P}^{-1}= \begin{bmatrix} ( \varvec{P}_{11}- \varvec{P}_{12} \varvec{P}_{22}^{-1} \varvec{P}_{21})^{-1}&\quad \! - \varvec{P}_{11}^{-1} \varvec{P}_{12}( \varvec{P}_{22}- \varvec{P}_{21} \varvec{P}_{11}^{-1} \varvec{P}_{12})^{-1}\\ -( \varvec{P}_{22}- \varvec{P}_{21} \varvec{P}_{11}^{-1} \varvec{P}_{12})^{-1} \varvec{P}_{21} \varvec{P}_{11}^{-1}&\quad \! ( \varvec{P}_{22}- \varvec{P}_{21} \varvec{P}_{11}^{-1} \varvec{P}_{12})^{-1} \end{bmatrix}. \end{aligned}$$

Then, it is easy to prove that \(- \varvec{P}_{11}+ \varvec{P}_{12} \varvec{P}_{22}^{-1} \varvec{P}_{21}\succ 0\). Since \( \varvec{D}_{11}\) is nonsingular and \( \varvec{U}_{11}\succ 0\), we have \( \varvec{D}_{11} \varvec{U}_{11} \varvec{D}_{11}^T\succ 0\). Thus the Eq. (48) is equivalent to

$$\begin{aligned} (- \varvec{P}_{11}+ \varvec{P}_{12} \varvec{P}_{22}^{-1} \varvec{P}_{21})^{-1}\preceq ( \varvec{D}_{11} \varvec{U}_{11} \varvec{D}_{11}^T)^{-1}, \end{aligned}$$
(49)

which is further equivalent to

$$\begin{aligned} \varvec{D}_{11}^T(- \varvec{P}_{11}+ \varvec{P}_{12} \varvec{P}_{22}^{-1} \varvec{P}_{21})^{-1} \varvec{D}_{11}\preceq \varvec{U}_{11}^{-1}. \end{aligned}$$
(50)

Since \( \varvec{D}_{11}^T(- \varvec{P}_{11}+ \varvec{P}_{12} \varvec{P}_{22}^{-1} \varvec{P}_{21})^{-1} \varvec{D}_{11}=- \varvec{D}^T \varvec{P}^{-1} \varvec{D}\) and \( \varvec{U}_{22}\succ 0\), the Eq. (50) is equivalent to

$$\begin{aligned} - \varvec{D}^T \varvec{P}^{-1} \varvec{D}- \varvec{U}^{-1}\preceq 0. \end{aligned}$$
(51)

The lemma is proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Gao, D.Y. Global solutions to nonconvex optimization of 4th-order polynomial and log-sum-exp functions. J Glob Optim 64, 417–431 (2016). https://doi.org/10.1007/s10898-014-0244-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0244-5

Keywords

Mathematics Subject Classification

Navigation