Skip to main content
Log in

Locating a median line with partial coverage distance

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We generalize the classical median line location problem, where the sum of distances from a line to some given demand points is to be minimized, to a setting with partial coverage distance. In this setting, a demand point within a certain specified threshold distance \(r\) of the line is considered covered and its partial coverage distance is considered to be zero, while non-covered demand points are penalized an amount proportional to their distance to the coverage region. The sum of partial coverage distances is to be minimized. We consider general norm distances as well as the vertical distance and extend classical properties of the median line location problem to the partial coverage case. We are finally able to derive a finite dominating set. While a simple enumeration of the finite dominating set takes \(O(m^3)\) time, \(m\) being the number of demand points, we show that this can be reduced to \(O(m^2\log m)\) in the general case by plane sweeping techniques and even to \(O(m)\) for the vertical distance and block norm distances by linear programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Avriel, M., Diewert, W.E., Schaible, S., Zang, I.: Generalized Concavity, Volume 36 of Mathematical Concepts and Methods in Science and Engineering. Plenum Press, New York (1988)

  2. Blanquero, R., Carrizosa, E., Schöbel, A., Scholz, D.: Location of a line in the three-dimensional space. EJOR 215, 14–20 (2011)

    Article  MATH  Google Scholar 

  3. Brimberg, J., Juel, H., Körner, M.-C., Schöbel, A.: On models for continuous facility location with partial coverage. EJOR (2013). doi:10.1057/jors.2013.142

  4. Brimberg, J., Juel, H., Schöbel, A.: Linear facility location in three dimensions—models and solution methods. Oper. Res. 50(6), 1050–1057 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brimberg, J., Juel, H., Schöbel, A.: Properties of 3-dimensional line location models. Ann. Oper. Res. 122, 71–85 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brimberg, J., Juel, H., Schöbel, A.: Locating a circle on a sphere. Oper. Res. 55(4), 782–791 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brimberg, J., Schieweck, R., Schöbel, A.: On median lines to approximate objects in the plane. In: ISOLDE XIII, June 2014

  8. Edelsbrunner, H., Welzl, E.: Constructing belts in two-dimensional arrangements with applications. SIAM J. Comput. 15(1), 271–284 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fleming, W.: Undergraduate Texts in Mathematics. Functions of Several Variables. Springer, New York (1977)

    Book  Google Scholar 

  10. Houle, M.E., Toussaint, G.T.: Computing the width of a set. IEEE Trans. Pattern Anal. Mach. Intell. 10(5), 761–765 (1988)

    Article  MATH  Google Scholar 

  11. Lee, D.T., Ching, Y.T.: The power of geometric duality revisited. Inf. Process. Lett. 21(3), 117–122 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Love, R.F., Morris, J.G., Wesolowsky, G.O.: Facilities Location: Models and Methods. North-Holland, New York (1988)

    MATH  Google Scholar 

  13. Mangasarian, O.L.: Arbitrary-norm separating plane. Oper. Res. Lett. 24(1–2), 15–23 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Michelot, C.: The mathematics of continuous location. Stud. Locat. Anal. 5, 58–83 (1993)

    Google Scholar 

  15. Morris, J.G., Norback, J.P.: A simple approach to linear facility location. Transp. Sci. 14(1), 1–8 (1980)

    Article  MathSciNet  Google Scholar 

  16. Martini, H., Schöbel, A.: Median hyperplanes in normed spaces—a survey. Discrete Appl. Math. 89, 181–195 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Martini, H., Schöbel, A.: A characterization of smooth norms. Geometriae Dedicata 77, 173–183 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Martini, H., Schöbel, A.: Median and center hyperplanes in Minkowski spaces—a unifying approach. Discrete Math. 241, 407–426 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Megiddo, N., Tamir, A.: Finding least-distances lines. SIAM J. Algebraic Discrete Methods 4(2), 207–211 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  20. Plastria, F., Carrizosa, E.: Gauge distances and median hyperplanes. J. Optim. Theory Appl. 110(1), 173–182 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Plastria, F., Carrizosa, E.: Linear separation and approximation by minimizing the sum of concave functions of distances. 4OR 12, 77–85 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  22. Plastria, F.: On destination optimality in asymmetric distance Fermat–Weber problems. Ann. Oper. Res. 40(1), 355–369 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Plastria, F.: Asymmetric distances, semidirected networks and majority in Fermat–Weber problems. Ann. Oper. Res. 167, 121–155 (2009)

    Article  MathSciNet  Google Scholar 

  24. Robert, J.-M., Toussaint, G.T.: Linear approximation of simple objects. Comput. Geom. 4(1), 27–52 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  25. Schöbel, A.: Locating Lines and Hyperplanes—Theory and Algorithms. Number 25 in Applied Optimization Series. Kluwer, Dordrecht (1999)

  26. Schieweck, R.: Lower bounds for line location problems via demand regions. Preprint 28, Institute for Numerical and Applied Mathematics, University of Göttingen (2013)

  27. Wesolowsky, G.O.: Location of the median line for weighted points. Environ. Plan. A 7, 163–170 (1975)

    Article  Google Scholar 

  28. Zemel, E.: An \(O(n)\) algorithm for the linear multiple choice knapsack problem and related problems. Inf. Process. Lett. 18(3), 123–128 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Schieweck.

Additional information

Jack Brimberg was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant (NSERC #205041-2008).

Robert Schieweck was supported by the DFG through the Research Training Group 1023.

Robert Schieweck and Anita Schöbel were supported by the European Union Seventh Framework Programme (FP7-PEOPLE-2009-IRSES) under Grant Agreement No. 246647 within the OptALI project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brimberg, J., Schieweck, R. & Schöbel, A. Locating a median line with partial coverage distance. J Glob Optim 62, 371–389 (2015). https://doi.org/10.1007/s10898-014-0239-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0239-2

Keywords

Navigation