Skip to main content

Advertisement

Log in

Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper presents a framework for constructing and analyzing enclosures of the reachable set of nonlinear ordinary differential equations using continuous-time set-propagation methods. The focus is on convex enclosures that can be characterized in terms of their support functions. A generalized differential inequality is introduced, whose solutions describe such support functions for a convex enclosure of the reachable set under mild conditions. It is shown that existing continuous-time bounding methods that are based on standard differential inequalities or ellipsoidal set propagation techniques can be recovered as special cases of this generalized differential inequality. A way of extending this approach for the construction of nonconvex enclosures is also described, which relies on Taylor models with convex remainder bounds. This unifying framework provides a means for analyzing the convergence properties of continuous-time enclosure methods. The enclosure techniques and convergence results are illustrated with numerical case studies throughout the paper, including a six-state dynamic model of anaerobic digestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, \(\alpha \)BB, for general twice-differentiable constrained NLPs—I. Theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158 (1998)

    Article  Google Scholar 

  2. Alamo, T., Bravo, J.M., Camacho, E.F.: Guaranteed state estimation by zonotopes. Automatica 41(6), 1035–1043 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization. In: 47th IEEE Conference on Decision and Control, 2008. CDC 2008, pp 4042–4048 (2008)

  4. Aubin, J.P.: Viability Theory. Birkhauser, Boston (1991)

    MATH  Google Scholar 

  5. Aubin, J.P., Cellina, A.: Differential Inclusions: Set-Valued Maps and Viability Theory. Grundlehren der mathematischen Wissenschaften, #264. Springer, Berlin (1984)

    Book  Google Scholar 

  6. Azagra, D., Ferrera, J.: Every closed convex set is the set of minimizers of some \({C}^\infty \)-smooth function. Proc. Am. Math. Soc. 130(12), 3687–3692 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bernard, O., Hadj-Sadok, Z., Dochain, D., Genovesi, A., Steyer, J.P.: Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol. Bioeng. 75(4), 424–438 (2001)

    Article  Google Scholar 

  8. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor series. Reliab. Comput. 4, 361–369 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Berz, M., Makino, K.: Performance of taylor model methods for validated integration of ODEs. Lect. Notes Comput. Sci. 3732, 65–74 (2006)

    Google Scholar 

  10. Blanchini, F., Miani, S.: Set-Theoretic Methods in Control. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  11. Bompadre, A., Mitsos, A.: Convergence rate of McCormick relaxations. J. Global Optim. 52(1), 1–28 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bompadre, A., Mitsos, A., Chachuat, B.: Convergence analysis of Taylor and McCormick-Taylor models. J. Global Optim. 57(1), 75–114 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chachuat, B., Latifi, M.A.: A new approach in deterministic global optimization of problems with ordinary differential equations. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, Nonconvex Optimization and Its Applications, vol. 74, pp. 83–108. Kluwer, Dordrecht (2003)

    Chapter  Google Scholar 

  14. Chachuat, B., Villanueva, M.E.: Bounding the solutions of parametric ODEs: when Taylor models meet differential inequalities. In: Bogle, I.D.L., Fairweather, M. (eds.) 22nd European Symposium on Computer Aided Process Engineering, vol. 30, pp. 1307–1311. Elsevier, Amsterdam (2012)

    Chapter  Google Scholar 

  15. Chachuat, B., Singer, A.B., Barton, P.I.: Global methods for dynamic optimization and mixed-integer dynamic optimization. Ind. Eng. Chem. Res. 45(25), 8373–8392 (2006)

    Article  Google Scholar 

  16. Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata using polygonal flow pipe approximations. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) Hybrid Systems: Computation and Control, no. 1569 in Lecture Notes in Computer Science, Springer, Berlin, pp 76–90 (1999)

  17. Clarke, F.H.: Generalized gradients and applications. Trans. Am. Math. Soc. 205, 247–262 (1975)

    Article  MATH  Google Scholar 

  18. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  19. Corliss, G.F., Rihm, R.: Validating an a priori enclosure using high-order Taylor series. In: Alefeld, G., Frommer, A., Lang, B. (eds.) Proceedings of the International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN’95), pp. 228–238. Akademie, Berlin (1996)

    Google Scholar 

  20. Du, K., Kearfott, R.B.: The cluster problem in multivariate global optimization. J. Global Optim. 5(3), 253–265 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Eijgenraam, P.: The solution of initial value problems using interval arithmetic: formulation and analysis of an algorithm, Mathmematical Centre tracts, vol. 144. Mathematisch Centrum (1981)

  22. Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Mathematics in Science and Engineering, vol. 165. Academic Press, New York (1983)

    Google Scholar 

  23. Friedrichs, K.: The identity of weak and strong extensions of differential operators. Trans. Am. Math. Soc. 55(1), 132–151 (1944)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gronwall, T.H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20(2), 292–296 (1919)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  26. Houska, B., Logist, F., Van Impe, J., Diehl, M.: Robust optimization of nonlinear dynamic systems with application to a jacketed tubular reactor. J. Process Control 22, 1152–1160 (2012)

    Article  Google Scholar 

  27. Jaulin, L.: Nonlinear bounded-error state estimation of continuous-time systems. Automatica 38(6), 1079–1082 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kieffer, M., Walter, E., Simeonov, I.: Guaranteed nonlinear parameter estimation for continuous-time dynamical models. In: Ninness, B., Hjalmarsson, H. (eds.) Proceeding of the 14th IFAC Symposium on System Identification (SYSID), pp. 843–848 (2006)

  29. Kurzhanski, A.B.: Comparison principle for equations of the Hamilton–Jacobi type in control theory. Proc. Steklov Inst. Math. 253(1), S185–S195 (2006)

    Article  MathSciNet  Google Scholar 

  30. Kurzhanski, A.B., Varaiya, P.: Reachability analysis for uncertain systems—the ellipsoidal technique. Dyn. Contin. Discret. Impuls. Syst. Ser. B 9(3), 347,368 (2002)

    MathSciNet  Google Scholar 

  31. Lakshmikantham, V., Leela, S.: Differential and Integral Inequalities, Theory and Applications: Volume I, Ordinary Differential Equations. Academic Press, New York (1969)

    Google Scholar 

  32. Limon, D., Bravo, J.M., Alamo, T., Camacho, E.F.: Robust MPC of constrained nonlinear systems based on interval arithmetic. IEE Proc. Control Theory Appl. 152(3), 325–332 (2005)

    Article  Google Scholar 

  33. Lin, Q., Rokne, J.G.: Methods for bounding the range of a polynomial. J. Comput. Appl. Math. 58, 193–199 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lin, Y., Stadtherr, M.A.: Deterministic global optimization of nonlinear dynamic systems. AIChE J. 53(4), 866–875 (2007a)

    Article  Google Scholar 

  35. Lin, Y., Stadtherr, M.A.: Validated solutions of initial value problems for parametric ODEs. Appl. Numer. Math. 57(10), 1145–1162 (2007b)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lin, Y., Stadtherr, M.A.: Rigorous model-based safety analysis for nonlinear continuous-time systems. Comput. Chem. Eng. 33(2), 493–502 (2009)

    Article  Google Scholar 

  37. Lohner, R.J.: Computation of guaranteed enclosures for the solutions of ordinary initial and boundary value problems. In: Cash, J.R., Gladwell, I. (eds.) Computational Ordinary Differential Equations, vol. 1, pp. 425–436. Clarendon Press, Oxford (1992)

    Google Scholar 

  38. Lygeros, J.: On reachability and minimum cost optimal control. Automatica 40(6), 917–927 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Makino, K., Berz, M.: Efficient control of the dependency problem based on Taylor model methods. Reliab. Comput. 5(1), 3–12 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  40. Maranas, C.D., Floudas, C.A.: Global minimum potential energy conformations of small molecules. J. Global Optim. 4, 135–170 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  41. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10, 147–175 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  42. Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton–Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Autom. Control 50(7), 947–957 (2005)

    Article  MathSciNet  Google Scholar 

  43. Mitsos, A., Chachuat, B., Barton, P.L.: McCormick-based relaxations of algorithms. SIAM J. Optim. 20(2), 573–601 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  44. Nedialkov, N.S., Jackson, K.R.: An interval hermite-obreschkoff method for computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation. Reliab. Comput. 5(3), 289–310 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  45. Nedialkov, N.S., Jackson, K.R., Corliss, G.: Validated solutions of initial value problems for ordinary differential equations. Appl. Math. Comput. 105, 21–68 (1998)

    Article  MathSciNet  Google Scholar 

  46. Nedialkov, N.S., Jackson, K.R., Pryce, J.D.: An effective high-order interval method for validating existence and uniqueness of the solution of an IVP for an ODE. Reliab. Comput. 7, 449–465 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  47. Neher, M., Jackson, K.R., Nedialkov, N.S.: On Taylor model based integration of ODEs. SIAM J. Numer. Anal. 45, 236–262 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  48. Neumaier, A.: Taylor forms—use and limits. Reliab. Comput. 9(1), 43–79 (2002)

    Article  MathSciNet  Google Scholar 

  49. Papamichail, I., Adjiman, C.S.: A rigorous global optimization algorithm for problems with ordinary differential equations. J. Global Optim. 24(1), 1–33 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  50. Papamichail, I., Adjiman, C.S.: Global optimization of dynamic systems. Comput. Chem. Eng. 28(3), 403–415 (2004)

    Article  Google Scholar 

  51. Ramdani, N., Meslem, N., Candau, Y.: A hybrid bounding method for computing an over-approximation for the reachable set of uncertain nonlinear systems. IEEE Trans. Autom. Control 54(10), 2352–2364 (2009)

    Article  MathSciNet  Google Scholar 

  52. Rauh, A., Hofer, E.P., Auer, E.: VALENCIA-IVP: A comparison with other initial value problem solvers. In: Proceedings of the 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN’2006), Duisburg, Germany (2006)

  53. Rauh, A., Westphal, R., Aschemann, H.: Verified simulation of control systems with interval parameters using an exponential state enclosure technique. In: 2013 18th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 241–246 (2013)

  54. Sahlodin, A.M.: Global Optimization of Dynamic Process Systems Using Complete Search Methods. PhD Thesis, McMaster University, Ontario, Canada (2012)

  55. Sahlodin, A.M., Chachuat, B.: Convex/concave relaxations of parametric ODEs using Taylor models. Comput. Chem. Eng. 35(5), 844–857 (2011a)

    Article  Google Scholar 

  56. Sahlodin, A.M., Chachuat, B.: Discretize-then-relax approach for convex/concave relaxations of the solutions of parametric ODEs. Appl. Numer. Math. 61, 803–820 (2011b)

    Article  MATH  MathSciNet  Google Scholar 

  57. Scott, J.K., Barton, P.I.: Bounds on the reachable sets of nonlinear control systems. Automatica 49(1), 93–100 (2013a)

    Article  MATH  MathSciNet  Google Scholar 

  58. Scott, J.K., Barton, P.I.: Improved relaxations for the parametric solutions of ODEs using differential inequalities. J. Global Optim. 57(1), 143–176 (2013b)

    Article  MATH  MathSciNet  Google Scholar 

  59. Scott, J.K., Stuber, M., Barton, P.I.: Generalized McCormick relaxations. J. Global Optim. 51(4), 569–606 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  60. Scott, J.K., Chachuat, B., Barton, P.I.: Nonlinear convex and concave relaxations for the solutions of parametric ODEs. Opt. Control Appl. Methods 34(2), 145–163 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  61. Singer, A.B., Barton, P.I.: Global solution of optimization problems with parameter-embedded linear dynamic systems. J. Optim. Theory Appl. 121(3), 613–646 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  62. Singer, A.B., Barton, P.I.: Bounding the solutions of parameter dependent nonlinear ordinary differential equations. SIAM J. Sci. Comput. 27(6), 2167–2182 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  63. Tomlin, C.J.: Verification and control of hybrid systems using reachability analysis. In: 19th Mediterranean Conference on Control and Automation (MED), Corfu, Greece (2011)

  64. Tomlin, C.J., Mitchell, I., Bayen, A.M., Oishi, M.: Computational techniques for the verification of hybrid systems. Proc. IEEE 91(7), 986–1001 (2003)

    Article  Google Scholar 

  65. Varaiya, P., Kurzhanski, A.B.: Ellipsoidal methods for dynamics and control. Part I. J. Math. Sci. 139(5), 6863–6901 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  66. Villanueva, M.E., Paulen, R., Houska, B., Chachuat, B.: Enclosing the reachable set of parametric ODEs using taylor models and ellipsoidal calculus. In: Kraslawski, A., Turunen, I. (eds.) 23rd European Symposium on Computer Aided Process Engineering (ESCAPE), vol. 31. Elsevier, Amsterdam (2013)

    Google Scholar 

  67. Walter, W.: Differential and Integral Inequalities. Springer, Berlin (1970)

    Book  MATH  Google Scholar 

  68. Wechsung, A., Schaber, S.D., Barton, P.I.: The cluster problem revisited. J. Global Optim. doi:10.1007/s10898-013-0059-9

  69. Zhou, T.S., Zhang, J.J., Yuan, Z.J., Chen, L.N.: Synchronization of genetic oscillators. Chaos 18(3), 037,126 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This paper is based upon work supported by the Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/J006572/1. Financial support from Marie Curie Career Integration Grant PCIG09-GA-2011-293953 and from the Centre of Process Systems Engineering (CPSE) of Imperial College is gratefully acknowledged. M.E.V. thanks CONACYT for doctoral scholarship. The authors are grateful to the anonymous reviewers and the associate editor for their thoughtful comments that led to substantial improvement of the article. Special thanks also go to Prof. Joseph K. Scott from Clemson University for fruitful discussions in connection to the proof of the generalized differential inequality in Sect. 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Chachuat.

Appendix: Technical Lemmata

Appendix: Technical Lemmata

The following two lemmata are used in the proof of Theorem 3. Although variants of these results can be found in the literature [23], we provide short proofs for the sake of completeness.

Lemma 1

Let \(\varphi : \mathbb {R}^{n} \rightarrow \mathbb {R}^{m}\) be a continuous function. For any compact set \(D\subset \mathbb {R}^n\) and any finite tolerance \(\varepsilon > 0\), there exists a smooth function \(\varphi _\varepsilon : \mathbb {R}^{n} \rightarrow \mathbb {R}^{m}\) such that

$$\begin{aligned} \forall x \in D\, , \quad \Vert \varphi _\varepsilon (x) - \varphi (x) \Vert \, \le \, \alpha (\varepsilon ) \, , \end{aligned}$$
(74)

for some continuous function \(\alpha : \mathbb {R}_+ \rightarrow \mathbb {R}_+\) with \(\alpha (0) = 0\).

Proof

The proof follows by applying well-known standard analysis techniques [23], and we only summarize the main idea here. Let \(\sigma _\varepsilon : \mathbb {R}^{n} \rightarrow \mathbb {R}\), \(\varepsilon > 0\) be a family of smooth functions parameterized in \(\varepsilon >0\), such that \(\sigma _\varepsilon (x) = 0\) for all \(x\) with \(\Vert x \Vert \ge \varepsilon \) and \(\int _{\mathbb {R}^n} \sigma _\varepsilon (x)\,{\mathrm{d}}x = 1\). Of the alternatives for constructing such a family of ‘mollifier’ functions, we consider the function

$$\begin{aligned} \sigma _\varepsilon (x) \, {:=} \, \left\{ \begin{array}{ll} C(\varepsilon ) \exp \left( \frac{1}{\Vert x \Vert ^2 - \varepsilon ^2} \right) &{} \, \text {if} \, \Vert x \Vert < \varepsilon \\ 0 &{} \, \text {otherwise} \end{array} \right\} \quad \text {with} \quad C(\varepsilon ) \ {:=} \int _{\Vert x \Vert \!\le \! \varepsilon } \, \exp \left( \frac{1}{\Vert x \Vert ^2 \!-\! \varepsilon ^2} \right) \, {\mathrm{d}}x \,. \end{aligned}$$

In turn, the function \(\varphi _{\varepsilon }\) can be defined as the convolution

$$\begin{aligned} \forall x \in \mathbb {R}^{n_x}, \quad \varphi _{\varepsilon }(x) \, {:=} \, \int _{\mathbb {R}^{n_x}} \sigma _\varepsilon (x-y) \varphi (y) \, {\mathrm{d}}y \, , \end{aligned}$$

which is smooth by construction for any \(\varepsilon > 0\). Observe that the function \(\alpha : \mathbb {R}_+ \rightarrow \mathbb {R}_+\) defined by

$$\begin{aligned} \forall \varepsilon \ge 0, \quad \alpha (\varepsilon ) \, {:=} \, \max _{x \in D} \, \max _{y} \left\{ \Vert \varphi (x) - \varphi (y) \Vert \, \left| \, \Vert y-x \Vert \le \varepsilon \right. \right\} \, , \end{aligned}$$

is continuous since \(\varphi \) is itself continuous and \(D\) is compact, and such that \(\alpha (0) = 0\). In particular, this choice of \(\alpha \) satisfies the condition (74). \(\square \)

Lemma 2

Let \(Y: \left[ 0,T\right] \rightarrow \mathbb {K}_{\mathrm{C}}^{n_x}\) be a set-valued function such that \(V[Y(\cdot )](c)\) is differentiable and \(\dot{V}[Y(\cdot )](c)\) is bounded for all \(c \in \mathbb {R}^{n_x}\) with \(c^{{{\mathrm{T}}}}c = 1\). Then, there exists a family of functions \(g_{\varepsilon }: [0,T] \times \mathbb {R}^{n_x} \rightarrow \mathbb {R}\) parameterized by \(\varepsilon \ge 0\), such that \(g_{\varepsilon }(t,\cdot )\) is strictly convex and smooth for all \(\varepsilon > 0\) and all \(t\in [0,T]\), and the associated sets \(Y_{\varepsilon }(t) \,{:=}\, \{ x \in \mathbb {R}^{n_x} \mid g_\varepsilon (t,x) \le 0 \}\) satisfy

$$\begin{aligned}&\displaystyle \forall \varepsilon \!\ge \! 0,\, \forall t \!\in \!\! \left[ 0,T\right] , \quad Y(t) \subseteq Y_{\varepsilon }(t) \quad \text {and}\quad d_{\mathrm{H}}( Y(t), Y_{\varepsilon }(t) ) \!\le \! \alpha (\varepsilon )\, ,\nonumber \\&\displaystyle \forall \varepsilon \ge 0,\, \forall t \in \left[ 0,T\right] ,\, \forall c \in \mathbb {R}^{n_x}\ \text {with}\ c^{{{\mathrm{T}}}}c=1, \quad \dot{V}[Y_{\varepsilon }(t)](c) \ge \dot{V}[Y(t)](c) + L \, \alpha (\varepsilon ) \nonumber \\ \end{aligned}$$
(75)

for some continuous function \(\alpha : \mathbb {R}_+ \rightarrow \mathbb {R}_+\) with \(\alpha (0) = 0\), and any constant \(0\le L<\frac{1}{T}\).

Proof

A proof can be obtained by passing through two steps.

  1. S1

    We start with any smooth function \(\nu _\varepsilon (t,\cdot ): \mathbb {R}^{n_x} \rightarrow \mathbb {R}\) such that

    $$\begin{aligned}&\forall \varepsilon > 0,\ \forall c \in \mathbb {R}^{n_x}\ \text {with}\ c^{{{\mathrm{T}}}}c = 1,\ \forall t\in [0,T],\\&\quad \nu _\varepsilon (t,c) \ge \dot{V}[Y(t)](c) \quad \text {and} \quad \left\| \nu _\varepsilon (t,c)- \dot{V}(t,c) \right\| \le \alpha _1(\varepsilon ) \, , \end{aligned}$$

    for some continuous function \(\alpha _1: \mathbb {R}_+ \rightarrow \mathbb {R}_+\) with \(\alpha _1(0) = 0\). Such a function is guaranteed to exist by Lemma 1. Then, we define the set-valued function \(Z_\varepsilon :\left[ 0,T\right] \rightarrow \mathbb {K}_{\mathrm{C}}^{n_x}\) such that

    $$\begin{aligned} \forall c \in \mathbb {R}^{n_x}\ \text {with}\ c^{{{\mathrm{T}}}}c = 1 , \quad V[Z_{\varepsilon }(t)](c) \, {:=} \, V[Y(0)](c) + \int _0^t \nu _\varepsilon (\tau ,c) \, {\mathrm{d}}\tau \,. \end{aligned}$$

    The following properties hold by construction of \(Z_\varepsilon \), for every \(\varepsilon > 0\):

    1. a)

      For all \(c\in \mathbb {R}^{n_x}\) with \(c^{{{\mathrm{T}}}}c = 1\), the function \(V[Z_{\varepsilon }(\cdot )](c)\) is differentiable on \(\left[ 0,T\right] \), and we have

      $$\begin{aligned} \forall c \in \mathbb {R}^{n_x}\ \text {with}\ c^{{{\mathrm{T}}}}c = 1 ,\ \forall t \in \left[ 0,T\right] , \quad \dot{V}[Z_{\varepsilon }(t)](c) \, \ge \, \dot{V}[Y(t)](c) \,. \end{aligned}$$
    2. b)

      \(d_{\mathrm{H}}( Z_{\varepsilon }(t), Y(t) ) \le T \alpha _1(\varepsilon )\), by property (6).

  2. S2

    We construct the set-valued function

    $$\begin{aligned} Y_{\varepsilon }(t) \, {:=} \, Z_{\varepsilon }(t) \oplus \left[ T \alpha _1(\varepsilon ) + t L \alpha (\varepsilon ) \right] \, \fancyscript{B}^{n_x} \quad \text {with}\quad \alpha (\varepsilon ) \, {:=} \, \frac{2T}{1 - T L} \alpha _1(\varepsilon ) \, , \end{aligned}$$

    with \(0\le L< \frac{1}{T}\). Note that the function \(\alpha \) is continuous and non-negative and it satisfies \(\alpha (0) = 0\) by definition. Therefore, we have \(Y_{\varepsilon }(t) \supseteq Y(t)\) since \(Y_{\varepsilon }(t) \supseteq Z_\varepsilon (t)\) and \(d_{\mathrm{H}}( Y_{\varepsilon }(t), Z_\varepsilon (t) ) \ge d_{\mathrm{H}}( Z_{\varepsilon }(t), Y(t) )\). It follows from Property a) that

    $$\begin{aligned} \dot{V}[Y_{\varepsilon }(t)](c) =&\dot{V}[Z_{\varepsilon }(t)](c) + L \alpha (\varepsilon )\\ \ge&\dot{V}[Y(t)](c) + L \alpha (\varepsilon ) \, , \end{aligned}$$

    for all \(t\in \left[ 0,T\right] \), all \(c \in \mathbb {R}^{n_x}\) with \(c^{{{\mathrm{T}}}}c = 1\), and all \(\varepsilon \ge 0\). Moreover, by Property b), we have

    $$\begin{aligned} d_{\mathrm{H}}( Y_{\varepsilon }(t), Y(t) ) \le&d_{\mathrm{H}}( Z_{\varepsilon }(t), Y(t) ) + \alpha _0(\varepsilon ) + T \alpha _1(\varepsilon ) + T L \alpha (\varepsilon )\\ \le&2 \alpha _0(\varepsilon ) + 2 T \alpha _1(\varepsilon ) + T L \alpha (\varepsilon )\\ =&\alpha (\varepsilon ) \, , \end{aligned}$$

    for all \(t \in \left[ 0,T\right] \), and all \(\varepsilon \ge 0\). Finally, by Theorem 1 in [6], there exists a functions \(g_{\varepsilon }: [0,T] \times \mathbb {R}^{n_x} \rightarrow \mathbb {R}\) such that \(Y_{\varepsilon }(t) =: \{ x \in \mathbb {R}^{n_x} \mid g_\varepsilon (t,x) \le 0 \}\) and \(g_{\varepsilon }(t,\cdot )\) is convex and smooth for all \(\varepsilon \ge 0\) and all \(t\in \left[ 0,T\right] \). In order for \(g_{\varepsilon }(t,\cdot )\) to be strictly convex for all \(\varepsilon >0\), one can always add a strictly convex and smooth term of order \(O(\varepsilon )\) that is negative on the compact sets \(\bigcup _{t\in \left[ 0,T\right] } Y_{\varepsilon }(t)\). \(\square \)

The following lemma is used in the proof of Theorem 4. The result allows one to bound the solution of a particular parametric differential inequality and can be regarded as a generalization of Gronwall’s lemma [24].

Lemma 3

Let \(v\in \mathbb {R}_+\) and let \(u: \left[ 0,T\right] \rightarrow \mathbb {R}\) be a Lipschitz-continuous function satisfying the parametric differential inequality

$$\begin{aligned} \text {a.e. }t\in \left[ 0,T\right] \, , \quad \frac{\mathrm{d}}{\mathrm{dt}} [u(t)]^n \, \le \, n \, \sum _{i=0}^n L_i \, u(t)^{n-i} \, v^{im} \quad \text {with} \quad u(0) \le C_0 v^m \, , \end{aligned}$$
(76)

for some integers \(m,n\ge 1\) and a set of constants \(0 \le L_0, \ldots , L_n < \infty \) and \(C_0 \ge 1\). Then, \(u(t) \le C_0 \, \exp \left( \sum _{i=0}^n L_i t\right) \, v^m\), for all \(t \in \left[ 0,T\right] \).

Proof

The proof proceeds in two steps. It is assumed first that the function \(u\) is differentiable on \([0,T]\). Then, it is argued that the result still holds in extending this class of functions to Lipschitz-continuous.

Assuming that \(u\) is differentiable on \([0,T]\) and discretizing the differential inequality (76) with a step-size \(h\,{:=}\,\frac{T}{N}\) for a large enough \(N\in \mathbb {N}\) gives

$$\begin{aligned} \forall k\in \{0,N-1\}\, , \quad \left[ u((k+1) h)\right] ^{n} \le&[u(k h)]^{n} + h \, n \, \sum _{i=0}^n L_i \, (u(kh))^{n-i} \, v^{im} + h\,\alpha (h) \, , \end{aligned}$$

for some continuous function \(\alpha : \mathbb {R}_+ \rightarrow \mathbb {R}_+\) with \(\alpha (0) = 0\). Now, supposing that \(u(kh) \le C_k \,v^{m}\) with \(C_k \ge 1\), we have

$$\begin{aligned} \left[ u((k+1) h) \right] ^{n}&\le (C_{k+1})^n \, v^{nm} \, + \, h\,\alpha (h) \quad \text {with} \quad (C_{k+1})^n {:=} \, \left( 1 + h n \sum _{i=0}^n L_i\right) (C_k)^n \ge 1 \,. \end{aligned}$$

In particular, the definition of \((C_{k+1})^n\) uses the result that

$$\begin{aligned} (C_k)^n + h n \, \sum _{i=0}^n L_i (C_k)^{n-i} \, \le \, \left( 1 + h n \sum _{i=0}^n L_i\right) (C_k)^n \, , \end{aligned}$$

for all \(C_k \ge 1\). It follows by induction that \(u(kh) \le C_{k} \,v^{m} + h\,\alpha (h)\) for each \(k=0,\ldots ,N\), with

$$\begin{aligned} C_k \, = \, \left( 1 + h n \sum _{i=0}^n L_i\right) ^{k/n}C_0 \,. \end{aligned}$$

Let \(\overline{t}\in [0,T]\) be such that \(\bar{t}\,{:=}\,\frac{k_0}{N_0}T\) for given \(0\le k_0 \le N_0\), and consider the sequence \(\{\overline{C}_j\}\) given by

$$\begin{aligned} \overline{C}_j \, {:=} \, \left( 1 + \frac{n\,T}{j\,N_0} \sum _{i=0}^n L_i\right) ^{jk_0/n}C_0 \, , \end{aligned}$$

so that \(u(\overline{t}) \le \overline{C}_j\,v^{m} + \frac{T}{j\,N_0}\,\alpha (\frac{T}{j\,N_0})\) for all \(j\ge 1\). It follows from the definition of the exponential function as \(\exp (x)\,{:=}\,\lim _{j\rightarrow \infty } (1+\frac{x}{j})^j\) that this sequence is convergent, and we have

$$\begin{aligned} \lim _{j\rightarrow \infty }\overline{C}_j \, = \, \exp \left( \sum _{i=0}^n L_i \overline{t} \right) \,C_0 \,. \end{aligned}$$

As \(u\) is continuous on \([0,T]\), and since the rationals are a dense subset of the real numbers, it follows that

$$\begin{aligned} \forall t\in [0,T]\, , \quad u(t) \, \le \, C(t) \, v^{m} \quad \text {with} \quad C(t) \, {:=} \, \exp \left( \sum _{i=0}^n L_i t \right) \,C_0 \,. \end{aligned}$$

In a second step, the assumption of differentiability for \(u\) can be relaxed to Lipschitz-continuity, by a similar argument as in part S3 of the proof of Theorem 3, namely that any (locally) Lipschitz-continuous function is differentiable almost everywhere. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villanueva, M.E., Houska, B. & Chachuat, B. Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs. J Glob Optim 62, 575–613 (2015). https://doi.org/10.1007/s10898-014-0235-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0235-6

Keywords

Navigation