Skip to main content
Log in

Optimization reformulations of the generalized Nash equilibrium problem using regularized indicator Nikaidô–Isoda function

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we extend the literature by adapting the Nikaidô–Isoda function as an indicator function termed as regularized indicator Nikaidô–Isoda function, and this is demonstrated to guarantee existence of a solution. Using this function, we present two constrained optimization reformulations of the generalized Nash equilibrium problem (GNEP for short). The first reformulation characterizes all the solutions of GNEP as global minima of the optimization problem. Later this approach is modified to obtain the second optimization reformulation whose global minima characterize the normalized Nash equilibria. Some numerical results are also included to illustrate the behaviour of the optimization reformulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bensoussan A.: Points de Nash dans le cas de fontionnelles quadratiques et jeux differentiels linéaires à à N personnes. SIAM J. Control 12, 460–499 (1974)

    Article  Google Scholar 

  2. Contreras J., Klusch M., Krawczyk J.B.: Numerical solutions to Nash–Cournot equilibria in coupled constraint electricity markets. IEEE Trans. Power Syst. 19, 195–206 (2004). doi:10.1109/TPWRS.2003.820692

    Article  Google Scholar 

  3. Facchinei F., Kanzow C.: Generalized Nash equilibrium problems. Ann. Oper. Res. 175, 177–211 (2010). doi:10.1007/s10479-009-0653-x

    Article  Google Scholar 

  4. Fl am, S.D., Ruszczyński, A.: Noncooperative convex games: computing equilibria by partial regularization, IIASA, Laxenburg, Working Paper 94-42 (1994)

  5. Fukushima M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53, 99–110 (1992). doi:10.1007/BF01585696

    Article  Google Scholar 

  6. Gabay, D., Moulin, H.: On the uniqueness and stability of Nash-equilibria in noncooperative games, Applied stochastic control in econometrics and management science, pp. 271–293, Contrib. Econ. Anal., 130, North-Holland, Amsterdam (1980)

  7. Gürkan G., Pang J.-S.: Approximations of Nash equilibria. Math. Program. 117, 223–253 (2007). doi:10.1007/s10107-007-0156-y

    Article  Google Scholar 

  8. Harker P.T.: Alternative models of spatial competition. Oper. Res. 34, 410–425 (1986). doi:10.1287/opre.34.3.410

    Article  Google Scholar 

  9. Harker P.T.: Generalized Nash games and quasi-variational inequalities. Eur. J. Oper. Res. 54, 81–94 (1991). doi:10.1016/0377-2217(91)90325-P

    Article  Google Scholar 

  10. Huang X.X., Yang X.Q.: A unified augmented Lagrangian approach to duality and exact penalization. Math. Oper. Res. 28, 533–552 (2003). doi:10.1287/moor.28.3.533.16395

    Article  Google Scholar 

  11. Jofré A., Wets R.J.-B.: Continuity properties of Walras equilibrium points. Stochastic equilibrium problems in economics and game theory. Ann. Oper. Res. 114, 229–243 (2002). doi:10.1023/A:1021022522035

    Article  Google Scholar 

  12. Lalitha C.S.: A new augmented Lagrangian approach to duality and exact penalization. J. Global Optim. 46, 233–245 (2010). doi:10.1007/s10898-00909420-4

    Article  Google Scholar 

  13. Leyffer S., Munson T.: Solving multi-leader-common-follower games. Optim. Methods Softw. 25, 601–623 (2010). doi:10.1080/10556780903448052

    Article  Google Scholar 

  14. Lions J.-L., Stampacchia G.: Variational inequalities. Comm. Pure Appl. Math. 20, 493–519 (1967). doi:10.1002/cpa.3160200302

    Article  Google Scholar 

  15. Mastroeni G.: Gap functions for equilibrium problems. J. Glob. Optim. 27, 411–426 (2003). doi:10.1023/A:1026050425030

    Article  Google Scholar 

  16. Nikaidô H., Isoda K.: Note on noncooperative convex games. Pac. J. Math. 5, 807–815 (1955)

    Article  Google Scholar 

  17. Rockafellar R.T.: Augmented Lagrangian multiplier functions and duality in nonconvex programming. SIAM J. Control Optim. 12, 268–285 (1974). doi:10.1137/0312021

    Article  Google Scholar 

  18. Steor J., Bulirsch R.: Introduction to Numerical Analysis, Third Edition, Springer, Texts in Applied Mathematics, 12. Springer, New York (2002)

    Google Scholar 

  19. Uryasev S., Rubinstein R.Y.: On relaxation algorithms in computation of noncooperative equilibria. IEEE Trans. Automat. Control 39, 1263–1267 (1994). doi:10.1109/9.293193

    Article  Google Scholar 

  20. von Heusinger A., Kanzow C.: Optimization reformulations of the generalized Nash equilibrium problem using Nikaidô–Isoda-type functions. Comput. Optim. Appl. 43, 353–377 (2009). doi:10.1007/s10589-007-9145-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansi Dhingra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalitha, C.S., Dhingra, M. Optimization reformulations of the generalized Nash equilibrium problem using regularized indicator Nikaidô–Isoda function. J Glob Optim 57, 843–861 (2013). https://doi.org/10.1007/s10898-012-9978-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9978-0

Keywords

Mathematics Subject Classification (2000)

Navigation