Skip to main content
Log in

Multi-parametric disaggregation technique for global optimization of polynomial programming problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper discusses a power-based transformation technique that is especially useful when solving polynomial optimization problems, frequently occurring in science and engineering. The polynomial nonlinear problem is primarily transformed into a suitable reformulated problem containing new sets of discrete and continuous variables. By applying a term-wise disaggregation scheme combined with multi-parametric elements, an upper/lower bounding mixed-integer linear program can be derived for minimization/maximization problems. It can then be solved to global optimality through standard methods, with the original problem being approximated to a certain precision level, which can be as tight as desired. Furthermore, this technique can also be applied to signomial problems with rational exponents, after a few effortless algebraic transformations. Numerical examples taken from the literature are used to illustrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biegler L.T., Grossmann I.E.: Retrospective on optimization. Comput. Chem. Eng. 28, 1169–1192 (2004)

    Article  Google Scholar 

  2. Grossmann I.E., Biegler L.T.: Part II. Future perspective on optimisation. Comput. Chem. Eng. 28, 1193–1218 (2004)

    Article  Google Scholar 

  3. Floudas C.A., Akrotirianakis I.G., Caratzoulas S., Meyer C.A., Kallrath J.: Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29, 1185–1202 (2005)

    Article  Google Scholar 

  4. Floudas C.A., Pardalos P.M., Adjiman C.S., Esposito W.R., Gumus Z.H., Harding S.T., Klepeis J.L., Meyer C.A., Schweiger C.A.: Handbook of Test Problems in Local and Global Optimization. Kluwer, Boston (1999)

    Google Scholar 

  5. Dembo R.S.: A set of geometric programming test problems and their solutions. Math. Prog. 10, 192–213 (1976)

    Article  Google Scholar 

  6. Avriel M., Williams A.C.: An extension of geometric programming with applications in engineering optimization. J. Eng. Math. 5, 187–194 (1971)

    Article  Google Scholar 

  7. Karuppiah R., Grossmann I.E.: Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30, 650–673 (2006)

    Article  Google Scholar 

  8. Glinos K., Marquez F., Douglas J.: Simple, analytical criteria for the sequencing of distillation columns. AIChE J. 31, 683 (1985)

    Article  Google Scholar 

  9. Westerberg A.W.: The synthesis of distillation based separation systems. Comput. Chem. Eng. 9, 421 (1985)

    Article  Google Scholar 

  10. Haverly C.A.: Studies of the behaviour of recursion for the pooling problem. ACM SIGMAP Bull. 25, 19–28 (1978)

    Article  Google Scholar 

  11. Misener R., Gounaris C.E., Floudas C.A.: Mathematical modeling and global optimization of large-scale extended pooling problems with the (EPA) complex emission constraints. Comput. Chem. Eng. 34, 1432–1456 (2010)

    Article  Google Scholar 

  12. Zener C.: A mathematical aid in optimizing engineering designs. Proc. Natl. Acad. Sci. USA 47, 537–539 (1961)

    Article  Google Scholar 

  13. Zener C.: A further mathematical aid in optimizing engineering designs. Proc. Natl. Acad. Sci. USA 48, 512–522 (1962)

    Article  Google Scholar 

  14. Duffin R.J., Peterson E.L.: A mathematical aid in optimizing engineering designs. SIAM J. Appl. Math. 14, 1307–1349 (1966)

    Article  Google Scholar 

  15. Duffin R.J.: Linearizing geometric programs. SIAM Rev. 12, 211–227 (1970)

    Article  Google Scholar 

  16. Passy U., Wilde D.J.: Generalized polynomial optimization. SIAM J. Appl. Math. 15, 1344 (1967)

    Article  Google Scholar 

  17. Blau G.E., Wilde D.J.: Generalized polynomial programming. Can. J. Chem. Eng. 47, 317 (1969)

    Article  Google Scholar 

  18. Avriel M., Williams A.C.: Complementary geometric programs. SIAM J. Appl. Math. 19, 125–141 (1970)

    Article  Google Scholar 

  19. Duffin R.J., Peterson E.L.: Reversed geometric programs treated by harmonic means. Indiana Univ. Math. J. 22, 531–549 (1972)

    Article  Google Scholar 

  20. Duffin R.J., Peterson E.L.: Geometric programming with signomials. J. Optim. Theory Appl. 11, 3–35 (1973)

    Article  Google Scholar 

  21. Maranas C.D., Floudas C.A.: Finding all solutions of nonlinearly constrained systems of equations. J. Glob. Optim. 7, 143–182 (1995)

    Article  Google Scholar 

  22. Maranas C.D., Floudas C.A.: Global optimization in generalized geometric programming. Comput. Chem. Eng. 21, 351–370 (1997)

    Article  Google Scholar 

  23. Floudas C.A.: Deterministic Global Optimization: Theory, Algorithms and Applications. Kluwer, Dordrecht (2000)

    Book  Google Scholar 

  24. Floudas C.A., Pardalos P.M.: State of the Art in Global Optimization—Computational Methods and Applications. Kluwer, Dordrecht (1996)

    Book  Google Scholar 

  25. Shen P.: Linearization method of global optimization for generalized geometric programming. Appl. Math. Comput. 162, 353–370 (2005)

    Article  Google Scholar 

  26. Wang Y., Liang Z.: A deterministic global optimization algorithm for generalized geometric programming. Appl. Math. Comput. 168, 722–737 (2005)

    Article  Google Scholar 

  27. Meyer C.A., Floudas C.A.: Trilinear monomials with mixed sign domains: facets of the convex and concave envelopes. J. Glob. Optim. 29, 125–155 (2004)

    Article  Google Scholar 

  28. Li H.L., Tsai J.F.: Treating free variables in generalized geometric global optimization programs. J. Glob. Optim. 33, 1–13 (2005)

    Article  Google Scholar 

  29. Tsai J.F., Lin M.H.: An optimization approach for solving signomial discrete programming problems with free variables. Comput. Chem. Eng. 30, 1256–1263 (2006)

    Article  Google Scholar 

  30. Tsai J.F., Lin M.H., Hu Y.C.: On generalized geometric programming problems with nonpositive variables. Eur. J. Oper. Res. 178, 10–17 (2007)

    Article  Google Scholar 

  31. Li H.L., Tsai J.F., Floudas C.A.: Convex underestimation for posynomial functions of positive variables. Optim. Lett. 2, 333–340 (2008)

    Article  Google Scholar 

  32. Björk K.M., Lindberg P.O., Westerlund T.: Some convexifications in global optimization of problems containing signomial terms. Comput. Chem. Eng. 27, 669–679 (2003)

    Article  Google Scholar 

  33. Westerlund T.: . In: Liberti, L., Maculan, N. (eds) Global Optimization: From Theory to Implementation, pp. 45–74. Springer, Berlin (2006)

  34. Lundell A., Westerlund T.: Convex underestimation strategies for signomial functions. Optim. Methods Softw. 24(4–5), 505–522 (2009)

    Article  Google Scholar 

  35. Pörn R., Björkb K.-M., Westerlund T.: Global solution of optimization problems with signomial parts. Discret. Optim. 5, 108–120 (2008)

    Article  Google Scholar 

  36. Shen P.-P., Li X., Jiao H.-W.: Accelerating method of global optimization for signomial geometric programming. J. Comput. Appl. Math. 214, 66–77 (2008)

    Article  Google Scholar 

  37. Lundell A., Westerlund J., Westerlund T.: Some transformation techniques with applications in global optimization. J. Glob. Optim. 43, 391–405 (2008)

    Article  Google Scholar 

  38. Lu H.-C., Li H.-L., Gounaris C.E., Floudas C.A.: Convex relaxation for solving posynomial programs. J. Glob. Optim. 46, 147–154 (2010)

    Article  Google Scholar 

  39. Westerlund T.: Some transformation techniques in global optimization. In: Liberti, L., Maculan, N. (eds) Global Optimization: From Theory to Implementation, pp. 47–74. Springer, Berlin (2005)

    Google Scholar 

  40. Li H.-L., Chang C.-T.: An approximate approach of global optimization for polynomial programming problems. Eur. J. Oper. Res. 107, 625–632 (1998)

    Article  Google Scholar 

  41. McCormick G.P.: Computability of global solutions to factorable nonconvex programs. Part I. Convex underestimating problems. Math. Program. 10, 146–175 (1976)

    Article  Google Scholar 

  42. Lasserre J.B.: Global optimization and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  Google Scholar 

  43. Shen P., Zhang K.: Global optimization of signomial geometric programming using linear relaxation. Appl. Math. Comput. 150(1), 99–114 (2004)

    Article  Google Scholar 

  44. Kesavan P. et al.: Outer approximation algorithms for separable nonconvex mixed-integer nonlinear programs. Math. Program. 100, 517–535 (2004)

    Article  Google Scholar 

  45. You F., Castro P.M., Grossmann I.E.: Dinkelbach’s algorithm as an efficient method to solve a class of MINLP models for large-scale cyclic scheduling problems. Comput. Chem. Eng. 33, 1879–1889 (2009)

    Article  Google Scholar 

  46. Tsai J.F., Lin M.H.: Global Optimization of signomial mixed-integer nonlinear programming problems with free variables. J. Glob. Optim. 42, 39–49 (2008)

    Article  Google Scholar 

  47. Floudas C.A., Pardalos P.M.: A Collection of Test Problems for Constrained Global Optimization Algorithms, Volume 455 of Lecture Notes in Computer Science. Springer, Berlin (1990)

    Book  Google Scholar 

  48. Adjiman C.S., Androulakis I.P., Floudas C.A.: A global optimization method, αBB, for general twice-differentiable constrained NLPs-II. Implementation and computational results. Comput. Chem. Eng. 22, 1159–1179 (1998)

    Article  Google Scholar 

  49. Teles, J.P., Castro, P.M., Matos, H.A.: Global optimization of water networks design using multiparametric disaggregation. Comput. Chem. Eng. (Submitted) (2011)

  50. Teles J., Castro P., Matos H.: Parametric programming technique for global optimization of wastewater treatment systems. In: Pierucci, S., Buzzi Ferraris, G. (eds) Computer-Aided Chemical Engineering, vol. 28, pp. 1093–1098. Elsevier, Amsterdam (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro M. Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teles, J.P., Castro, P.M. & Matos, H.A. Multi-parametric disaggregation technique for global optimization of polynomial programming problems. J Glob Optim 55, 227–251 (2013). https://doi.org/10.1007/s10898-011-9809-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9809-8

Keywords

Navigation