Skip to main content
Log in

A conic scalarization method in multi-objective optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper presents the conic scalarization method for scalarization of nonlinear multi-objective optimization problems. We introduce a special class of monotonically increasing sublinear scalarizing functions and show that the zero sublevel set of every function from this class is a convex closed and pointed cone which contains the negative ordering cone. We introduce the notion of a separable cone and show that two closed cones (one of them is separable) having only the vertex in common can be separated by a zero sublevel set of some function from this class. It is shown that the scalar optimization problem constructed by using these functions, enables to characterize the complete set of efficient and properly efficient solutions of multi-objective problems without convexity and boundedness conditions. By choosing a suitable scalarizing parameter set consisting of a weighting vector, an augmentation parameter, and a reference point, decision maker may guarantee a most preferred efficient or properly efficient solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benson H.P.: An improved definition of proper efficiency for vector maximization with respect to cones. J. Math. Anal. Appl. 71, 232–241 (1979)

    Article  Google Scholar 

  2. Borwein J.: Proper efficient points for maximizations with respect to cones. SIAM J. Control Optim. 15, 57–63 (1977)

    Article  Google Scholar 

  3. Buchanan J., Gardiner L.: A comparison of two reference point methods in multiple objective mathematical programming. Eur. J. Oper. Res. 149, 17–34 (2003)

    Article  Google Scholar 

  4. Chinchuluun A., Pardalos P.M., Migdalas A., Pitsoulis L. (eds.): Pareto Optimality, Game Theory and Equilibria. Springer, Berlin (2008)

    Google Scholar 

  5. Chinchuluun A., Pardalos P.M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154(1), 29–50 (2007)

    Article  Google Scholar 

  6. Ehrgott M.: Multicriteria Optimization. Springer, Berlin (2005)

    Google Scholar 

  7. Eichfelder G.: Adaptive Scalarization Methods in Multiobjective Optimization. Springer, Berlin (2008)

    Book  Google Scholar 

  8. Ehrgott M., Waters C., Kasimbeyli R., Ustun O.: Multiobjective programming and multiattribute utility functions in portfolio optimization. INFOR: Inf. Syst. Oper. Res. 47, 31–42 (2009)

    Google Scholar 

  9. Ehrgott M., Wiecek M.: Multiobjective programming. In: Figueira, J., Greco, S., Ehrgott, M. (eds) Multicriteria Decision Analysis: State of the Art Surveys, pp. 667–722. Springer, New York (2005)

    Google Scholar 

  10. Gasimov, R.N.: Characterization of the Benson proper efficiency and scalarization in nonconvex vector optimization. In: Koksalan, M., Zionts, S. (eds.) Multiple Criteria Decision Making in the New Millennium, Book Series: Lecture Notes in Economics and Mathematical Systems, vol. 507, pp. 189–198 (2001)

  11. Gasimov R.N.: Augmented Lagrangian duality and nondifferentiable optimization methods in nonconvex programming. J. Global Optim. 24, 187–203 (2002)

    Article  Google Scholar 

  12. Gasimov R.N., Ozturk G.: Separation via polyhedral conic functions. Optim. Methods Softw. 21, 527–540 (2006)

    Article  Google Scholar 

  13. Gasimov R.N., Rubinov A.M.: On augmented Lagrangians for optimization problems with a single constraint. J. Global Optim. 28(5), 153–173 (2004)

    Article  Google Scholar 

  14. Gasimov R.N., Sipahioglu A., Sarac T.: A multi-objective programming approach to 1.5-dimensional assortment problem. Eur. J. Oper. Res. 179, 64–79 (2007)

    Article  Google Scholar 

  15. Gearhart W.B.: Compromise solutions and estimation of the noninferior set. J. Optim. Theory Appl. 28, 29–47 (1979)

    Article  Google Scholar 

  16. Henig M.I.: Proper efficiency with respect to cones. J. Optim. Theory Appl. 36, 387–407 (1982)

    Article  Google Scholar 

  17. Ismayilova N.A., Sagir M., Gasimov R.N.: A multiobjective faculty-course-time slot assignment problem with preferences. Math. Comput. Model. 46, 1017–1029 (2007)

    Article  Google Scholar 

  18. Jahn J.: A characterization of properly minimal elements of a set. SIAM J. Control Optim. 23, 649–656 (1985)

    Article  Google Scholar 

  19. Jahn J.: Scalarization in vector optimization. Math. Program. 29, 203–218 (1984)

    Article  Google Scholar 

  20. Kaliszewski I.: A modified weighted Tchebycheff metric for multiple objective programming. Comput. Oper. Res. 14, 315–323 (1987)

    Article  Google Scholar 

  21. Kasimbeyli R.: Radial epiderivatives and set-valued optimization. Optimization 58, 521–534 (2009)

    Article  Google Scholar 

  22. Kasimbeyli R.: A nonlinear cone separation theorem and scalarization in nonconvex vector optimization. SIAM J. Optim. 20, 1591–1619 (2010)

    Article  Google Scholar 

  23. Kasimbeyli R., Ustun O., Rubinov A.M.: The modified subgradient algorithm based on feasible values. Optimization 58(5), 535–560 (2009)

    Article  Google Scholar 

  24. Lewandowski, A., Wierzbicki, A.: Aspiration Based Decision Analysis, PartI: Theoretical and Methodological Backgrounds. Working paper WP-88-03, International Institute for Applied Systems Analysis, Laxenburg, Austria (1988)

  25. Luc, D.T.: Theory of Vector Optimization, Lecture Notes in Econom. and Math. Systems, vol. 319. Springer, Berlin (1989)

  26. Miettinen K.: Nonlinear multiobjective optimization. Kluwer, Boston (1999)

    Google Scholar 

  27. Miettinen K., Mäkelä M.: On scalarizing functions in multiobjective optimization. OR Spectrum 24, 193–213 (2002)

    Article  Google Scholar 

  28. Ozdemir M.S., Gasimov R.N.: The analytic hierarchy process and multiobjective 0-1 faculty course assignment. Eur. J. Oper. Res. 157, 398–408 (2004)

    Article  Google Scholar 

  29. Pardalos, P.M., Siskos, Y., Zopounidis, C. (eds): Advances in Multicriteria Analysis. Kluwer, Dordrecht (1995)

  30. Rolewicz S.: On a norm scalarization in infinite dimensional Banach spaces. Control Cybernet. 4, 85–89 (1975)

    Google Scholar 

  31. Rubinov A.M., Gasimov R.N.: Scalarization and nonlinear scalar duality for vector optimization with preferences that are not necessarily a pre-order relation. J. Global Optim. 29, 455–477 (2004)

    Article  Google Scholar 

  32. Salukvadze M.E.: Optimization of vector functionals (in Russian). Avtomat. Telemekh. 8, 5–15 (1971)

    Google Scholar 

  33. Schandl B., Klamroth K., Wiecek M.M.: Introducing oblique norms into multiple criteria programming. J. Global Optim. 23, 81–97 (2002)

    Article  Google Scholar 

  34. Steuer R.E.: Multiple Criteria Optimization: Theory, Computation and Application. Wiley, New York (1986)

    Google Scholar 

  35. Ustun, O., Kasimbeyli, R.: Combined forecasts in portfolio optimization: a generalized approach. Comput. Oper. Res. doi:10.1016/j.cor.2010.09.008 (in press)

  36. Wierzbicki A.P.: The use of reference objectives in multiobjective optimization. In: Fandel, G., Gal, T. (eds) Multiple Criteria Decision Making: heory and Applications. Lecture Notes in Economics and Mathematical Systems, vol 177. Springer, Berlin pp. 468–486. (1980)

    Chapter  Google Scholar 

  37. Wierzbicki, A.P.: Reference Point Methods in Vector Optimization and Decision Support. Interim report IR-98-017, International Institute for Applied Systems Analysis, Laxenburg, Austria (1998)

  38. Yu P.L.: A class of solutions for group decision problems. Manage. Sci. 19, 936–946 (1973)

    Article  Google Scholar 

  39. Zopounidis, C.: Compromise programming. In: Cochrane, J.L., Zeleny, M. (eds.) Multiple Criteria Decision Making, pp. 262–301. University of South Carolina, Columbia, SC (1973)

    Google Scholar 

  40. Zopounidis, C., Pardalos, P.M. (eds.): Handbook of Multicriteria Analysis. XXV, 455 p., ISBN 978-3-540-92827-0 (print), 978-3-540-92828-7 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Refail Kasimbeyli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasimbeyli, R. A conic scalarization method in multi-objective optimization. J Glob Optim 56, 279–297 (2013). https://doi.org/10.1007/s10898-011-9789-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-011-9789-8

Keywords

Navigation