Skip to main content
Log in

Formation of Pentosidine Cross-Linking in Myoglobin by Glyoxal: Detection of Fluorescent Advanced Glycation End Product

  • SHORT COMMUNICATION
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Glyoxal, a reactive α-oxoaldehyde, increases in diabetic condition and reacts with proteins to form advanced glycation end products (AGEs) following Maillard-like reaction. Considering the significance of protein modification by glyoxal-derived AGEs, we investigated the in vitro effect of glyoxal (200 μM) on the monomeric heme protein myoglobin (Mb) (100 μM) after incubation for one week at 25 °C. Glyoxal-treated Mb exhibited increased absorbance around the Soret region, decreased α-helicity and thermal stability compared to control Mb. Intrinsic fluorescence spectrum of the treated Mb showed an additional signal in the 400–500 nm region on excitation at 280 nm that was absent in control Mb. When excited at 335 nm, the glyoxal-treated sample gave a strong fluorescence indicating AGE formation. Mass spectrometric studies revealed formation of glyoxal-derived fluorescent AGE adduct pentosidine between Lys-145 and Arg-139 residues of Mb. Other than pentosidine, additional AGE adducts, namely, carboxymethyllysine at Lys-133, hydroimidazolone at Arg-31 and pyrrolidone-carboxymethyllysine at Lys-145 were also detected. Lys-145 was thus found to contain two different types of AGE adducts, indicating the heterogeneous nature of in vitro glycation reaction. AGE-induced protein modifications might be associated with complications in disease conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Cohen MP, Wu V (1994) Purification of glycated hemoglobin. Methods Enzymol 231:65–75

    Article  CAS  PubMed  Google Scholar 

  2. Giardino I, Edelstein D, Brownlee M (1994) Nonenzymatic glycosylation in vitro in bovine endothelial cells alters basic fibroblast growth factor. J Clin Invest 94:110–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rosen P, Nawroth PP, King G, Moller W, Tritschler HJ, Packer L (2001) The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of congress series sponsored by UNESCO-MCBN, the American Diabetes Association and the German diabetes society. Diabetes Metab Res Rev 17:189–212

    Article  CAS  PubMed  Google Scholar 

  4. Thornalley PJ, Langborg A, Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 344:109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ahmed N, Dobler D, Dean M, Thornalley PJ (2005) Peptide mapping identifies hotspot site of modification in human serum albumin by methylglyoxal involved in ligand binding and esterase activity. J Biol Chem 280:5724–5732

    Article  CAS  PubMed  Google Scholar 

  6. Kalapos MP (1999) Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications. Toxicol Lett 110:145–175

    Article  CAS  PubMed  Google Scholar 

  7. Oliviera LMA, Gomes RA, Yang D et al (2013) Insights into the molecular mechanism of protein native-like aggregation upon glycation. Biochim Biophys Acta 1834:1010–1022

    Article  Google Scholar 

  8. Kang JH (2006) Oxidative modification of human ceruloplasmin by methylglyoxal: an in vitro study. J Biochem Mol Biol 39:335–338

    CAS  PubMed  Google Scholar 

  9. Banerjee S, Maity S, Chakraborti AS (2016) Methylglyoxal-induced modification causes aggregation of myoglobin. Spectrochim Acta Part A 155:1–10

    Article  CAS  Google Scholar 

  10. Gao Y, Wang Y (2006) Site-selective modifications of arginine residues in human hemoglobin induced by methylglyoxal. Biochemistry 45:15654–15660

    Article  CAS  PubMed  Google Scholar 

  11. Bose T, Bhattacherjee A, Banerjee S, Chakraborti AS (2013) Methylglyoxal-induced modifications of hemoglobin: structural and functional characteristics. Arch Biochem Biophys 529:99–104

    Article  CAS  PubMed  Google Scholar 

  12. Lapolla A, Flamini R, Vedova AD et al (2003) Glyoxal and methylglyoxal levels in diabetic patients: quantitative determination by a new GC/MS method. Clin Chem Lab Med 41:1166–1173

    Article  CAS  PubMed  Google Scholar 

  13. Kumar MS, Reddy PY, Kumar PA, Surolia I (2004) Reddy GB (2004) effect of dicarbonyl induced browning on α-crystallin chaperone-like activity: physiological significance and caveats of in vitro aggregation assays. Biochem J 379:273–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mikulikova K, Miksik I, Deyl Z (2005) Non-enzymatic posttranslational modifications of bovine serum albumin by oxo-compounds investigated by chromatographic and electrophoretic methods. J Chromatogr B 815:315–331

    Article  CAS  Google Scholar 

  15. Lee D, Park CW, Paik SR, Choi KY (2009) The modification of α-synuclein by dicarbonyl compounds inhibits its fibril-forming process. Biochim Biophys Acta 1794:421–430

    Article  CAS  PubMed  Google Scholar 

  16. Iram A, Alam T, Khan JM, Khan TA, Khan RH, Naeem A (2013) Molten globule of hemoglobin proceeds into aggregates and advanced glycated end products. PLoS One 8:e72075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Banerjee S, Chakraborti AS (2014) Structural alterations of hemoglobin and myoglobin by glyoxal: a comparative study. Int J Biol Macromol 66:311–318

    Article  CAS  PubMed  Google Scholar 

  18. Ahmed MU, Thorpe SR, Baynes JW (1986) Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J Biol Chem 261:4889–4894

    CAS  PubMed  Google Scholar 

  19. Iijima K, Murata M, Takahara H, Irie S, Fujimoto D (2007) Identification of Nω- carboxymethylarginine as a novel acid-labile advanced glycation end product in collagen. Biochem J 347:23–27

    Article  Google Scholar 

  20. Roy A, Sil R, Chakraborti AS (2010) Non-enzymatic glycation induces structural modifications of myoglobin. Mol Cell Biochem 338:105–114

    Article  CAS  PubMed  Google Scholar 

  21. Bhattacherjee A, Chakraborti AS (2011) Fructose-induced modifications of myoglobin: change of structure from met (Fe3+) to oxy (Fe2+) form. Int J Biol Macromol 48:202–209

    Article  CAS  PubMed  Google Scholar 

  22. Bokiej M, Livermore AT, Harris AW, Onishi AC, Sandwick RK (2011) Ribose sugars generate internal glycation cross-links in horse heart myoglobin. Biochem Biophys Res Commun 47:191–196

    Article  Google Scholar 

  23. Banerjee S, Chakraborti AS (2013) In vitro study on structural alteration of myoglobin by methylglyoxal. Protein J 32:216–222

    Article  CAS  PubMed  Google Scholar 

  24. Obrenovich ME, Monnier VM (2004) Glycation stimulates amyloid formation. Sci Aging Knowl Environ 2004: pe3

  25. Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci 91:4766–4770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shaikh S, Nicholson LF (2008) Advanced glycation end products induce in vitro crosslinking of alpha-synuclein and accelerate the process of intracellular inclusion body formation. J Neurosci Res 86:2071–2082

    Article  CAS  PubMed  Google Scholar 

  27. Ghosh Moulick R, Bhattacharya J, Roy S, Basak S, Dasgupta AK (2007) Compensatory secondary structure alterations in protein glycation. Biochim Biophys Acta 1774:233–242

    Article  CAS  Google Scholar 

  28. Ghosh S, Pandey NK, Roy AS, Tripathy DR, Dinda AK, Dasgupta S (2013) Prolonged glycation of hen egg white lysozyme generates non amyloidal structures. PLoS One 8:e74336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fazili NA, Bhat WF, Naeem A (2014) Induction of amyloidogenicity in wild type HEWL by a dialdehyde: analysis involving multi dimensional approach. Int J Biol Macromol 64:36–44

    Article  CAS  PubMed  Google Scholar 

  30. Oliveira LMA, Lages A, Gomes RA, Neves H, Familia C (2011) Insulin glycation by methylglyoxal results in native-like aggregation and inhibition of fibril formation. BMC Biochem 12:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mir AR, Uddin M, Alam K, Ali AA (2014) Methylglyoxal mediated conformational changes in histone H2A - generation of carboxyethylated advanced glycation end products. Int J Biol Macromol 69:260–266

    Article  CAS  PubMed  Google Scholar 

  32. Wittenberg JB, Wittenberg BA (1981) Preparation of myoglobins. Methods Enzymol 76:29–42

    Article  CAS  PubMed  Google Scholar 

  33. Chen YH, Yan JT, Martinez HM (1972) Determination of secondary structure of proteins by circular dichroism and optical rotatory dispersion. Biochemistry 11:4120–4131

    Article  CAS  PubMed  Google Scholar 

  34. Lo TWC, Westwood ME, McLellan AC, Selwood T, Thornalley PJ (1994) Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. J Biol Chem 269:32299–32305

    CAS  PubMed  Google Scholar 

  35. Thornalley PJ (1995) Advances in glyoxalase research. Glyoxalase expression in malignancy, anti-proliferative effects of methylglyoxal, glyoxalase I inhibitor diesters and S-D-lactoylglutathione, and methylglyoxal-modified protein binding and endocytosis by advanced glycation end product receptor. Crit Rev Oncol Hematol 20:99–128

    Article  CAS  PubMed  Google Scholar 

  36. Luthra M, Balasubramanian D (1993) Non enzymatic glycation alters protein structure and stability. J Biol Chem 268:18119–18127

    CAS  PubMed  Google Scholar 

  37. Girones X, Guimera A, Cruz-Sanchez C-Z, Ortega A, Sasaki N, Makita Z, Lafuente JV, Kalaria R, Cruz-Sanchez FF (2004) Nε-carboxymethyllysine in brain aging, diabetes mellitus, and Alzheimer’s disease. Free Radic Biol Med 36:1241–1247

    Article  CAS  PubMed  Google Scholar 

  38. Kleter GA, Damen JJM, Buijs MJ, Cate JMT (1998) Modification of amino acid residues in carious dentin matrix. J Dent Res 77:488–495

    Article  CAS  PubMed  Google Scholar 

  39. Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R, Dawnay A (2003) Quantitative screening of advanced glycation end products in cellular and extracellular proteins by tandem mass spectrometry. Biochem J 375:581–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sternberg Z, Hennies C, Sternberg D, Wang P, Kinkel P, Hojnacki D, Weinstock-Guttmann B, Munschauer F (2010) Diagnostic potential of plasma carboxymethyllysine and carboxyethyllysine in multiple sclerosis. J Neuroinflammation 7:72

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sell DR, Monnier VM (1990) End-stage renal disease and diabetes catalyze the formation of a pentose-derived crosslink from aging human collagen. J Clin Invest 85:380–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dyer DG, Dunn JA, Thorpe SR, Bailie KE, Lyons TJ, McCance DR, Baynes JW (1993) Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest 91:2463–2469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Taneda S, Monnier VM (1994) ELISA of pentosidine, an advanced glycation end product, in biological specimens. Clin Chem 40:1766–1773

    CAS  PubMed  Google Scholar 

  44. Smith MA, Taneda S, Richey PL et al (1994) Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc Natl Acad Sci U S A 91:5710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.B. received a research fellowship [Grant No. 09/028(0802)/2010- EMR-1] from the Council of Scientific and Industrial Research, New Delhi. The study was supported by financial assistances from the Department of Science and Technology, New Delhi (No. SR/FST/LSI-286/2006) [DST-FIST program] and the University Grants Commission, New Delhi (No. F. 4-1/2009(SAP-II)) [DSA program].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sauradipta Banerjee.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S. Formation of Pentosidine Cross-Linking in Myoglobin by Glyoxal: Detection of Fluorescent Advanced Glycation End Product. J Fluoresc 27, 1213–1219 (2017). https://doi.org/10.1007/s10895-017-2064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2064-8

Keywords

Navigation