Skip to main content
Log in

A Highly Selective and Sensitive Fluorescent Turn-on Probe for Al3+ Based on Naphthalimide Schiff Base

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A simple and highly selective aluminium ion fluorescent probe (N-n-butyl-4-[3,3′-((2-aminoethyl)azanediyl)bis(N′-(2-hydroxy-3-methoxybenzylidene)-propanehydrazide)]-1,8-naphthalimide) (P-1) employing 1,8-naphthalimide as the fluorophore group and Schiff base as the recognition group has been successfully synthesized and systemically characterized. The structure of probe P-1 has been established by single crystal X-ray. The photophysical properties of probe P-1 revealed that the values of the fluorescence quantum yield are higher in non-polar solvents than in polar solvents. Compared with the free P-1, the fluorescence intensity of P-1 shows a significant fluorescence enhancement in the presence of Al3+ without any significant interference from other cations and anions. In addition, from the UV–vis titration, fluorescence titration,Job’s plot and 1H NMR spectra analysis, we could primarily confirm that three important coordinative sites of P-1 for Al3+ were from imine nitrogen and tertiary amine nitrogen and formed a 1:1 complex. The fluorescence intensity for the (P-1) showed a good linearity with the concentration of Al3+ in the range of 3.0–10.0 μM, with a detection limit of 8.65 × 10−8 M and a binding constant (Kb) of 4.95 × 104 M−1. It is worthy of note that the probe P-1 was successfully applied in detection of Al3+ in Yellow River and tap water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

References

  1. Wang Y, Hou LJ, Wu Y, Shi LL, Shang ZB, Jin WJ (2014) Alizarin Complexone as a highly selective ratiometric fluorescent probe for Al3+ detection in semi-aqueous solution. J Photoch Photobio A 281:40–46

    Article  CAS  Google Scholar 

  2. Qin J, Yang Z (2015) Selective fluorescent sensor for Al3+ using a novel quinoline derivative in aqueous solution. Synth Met 209:570–576

    Article  CAS  Google Scholar 

  3. Perl DP, Gajdusek DC, Garruto RM, Yanagihara RT, Gibbs CJ (1982) Intraneuronal aluminium accumulation in amyotrophic lateral sclerosis and parkinsonismdementia of Guam. Science 217:1053–1055

    Article  CAS  PubMed  Google Scholar 

  4. Perl DP, Brody AR (1980) Alzheimer's disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science 208:297–299

    Article  CAS  PubMed  Google Scholar 

  5. Tavakoli O, Yoshida H (2005) Effective recovery of harmful metal ions from squid wastes using subcritical and supercritical water treatments. Environ Sci Technol 39:2357–2363

    Article  CAS  PubMed  Google Scholar 

  6. Weller DG, Gutierrez AJ, Rubio C, Revert C, Hardisson A (2010) Dietary intake of aluminum in a Spanish population (Canary islands). J Agric Food Chem 58:10452–10457

    Article  Google Scholar 

  7. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40

    Article  CAS  Google Scholar 

  8. Fasman GD (1996) Aluminium and Alzheimer's disease: model studies. Coord Chem Rev 149:125–165

    Article  CAS  Google Scholar 

  9. Sen S, Mukherjee T, Chattopadhyay B, Moirangthem A, Basu A, Marek J, Chattopadhyay P (2012) A water soluble Al3+ selective colorimetric and fluorescent turn-on chemosensor and its application in living cell imaging. Analyst 137:3975–3981

    Article  CAS  PubMed  Google Scholar 

  10. Shi XY, Wang H, Han TY, Feng X, Tong B, Shi JB, Zhi J, Dong YP (2012) A highly sensitive, single selective, real-time and turn-on fluorescent sensor for Al3+ detection in aqueous media. J Mater Chem 22:19296–19302

    Article  CAS  Google Scholar 

  11. Chen Y, Mi Y, Xie Q, Xiang J, Fan H, Luo X, Xia S (2013) A new off–on chemosensor for Al3+ and Cu2+ in two different systems based on a rhodamine B derivative. Anal Methods 5:4818–4823

    Article  CAS  Google Scholar 

  12. Choi YW, Park GJ, Na YJ, Jo HY, Lee SA, You GR, Kim C (2014) A single schiff base molecule for recognizing multiple metal ions: a fluorescence sensor for Zn(II) and Al(III) and colorimetric sensor for Fe(II) and Fe(III). Sensor Actuat B-Chem 194:343–352

    Article  CAS  Google Scholar 

  13. Maity D, Govindaraju T (2012) A differentially selective sensor with fluorescence turn-on response to Zn2+ and dual-mode ratiometric response to Al3+ in aqueous media. Chem Commun 48:1039–1041

    Article  CAS  Google Scholar 

  14. Ajayaghosh A, Carol P, Sreejith S (2005) A Ratiometric Fluorescence Probe for Selective Visual Sensing of Zn2+. J Am Chem Soc 127:14962–14963

    Article  CAS  PubMed  Google Scholar 

  15. Zhang JF, Zhou Y, Yoon J, Kim JS (2011) Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem Soc Rev 40:3416–3429

    Article  CAS  PubMed  Google Scholar 

  16. Maity D, Manna AK, Karthigeyan D, Kundu TK, Pati SK, Govindaraju T (2011) Visible–Near-Infrared and Fluorescent Copper Sensors Based on Julolidine Conjugates: Selective Detection and Fluorescence Imaging in Living Cells. Chem Eur J 17:11152–11161

    Article  CAS  PubMed  Google Scholar 

  17. Sahana A, Banerjee A, Das S, Lohar S, Karak D, Sarkar B, Mukhopadhyay SK, Mukherjee AK, Das D (2011) A naphthalene-based Al3+ selective fluorescent sensor for living cell imaging. Org Biomol Chem 9:5523–5529

    Article  CAS  PubMed  Google Scholar 

  18. Boevski IV, Daskalova N, Havezov I (2000) Determination of barium, chromium, cadmium, manganese, lead and zinc in atmospheric particulate matter by inductively coupled plasma atomic emission spectrometry (ICP-AES). Spectrochim Acta B 55:1643–1657

    Article  Google Scholar 

  19. Silvestre MD, Lagarda MJ, Farre R, Martinez-Costa C, Brines J (2000) Copper, iron and zinc determinations in human milk using FAAS with microwave digestion. Food Chem 68:95–99

    Article  CAS  Google Scholar 

  20. Weber G, Alt F, Messerschmidt J (1998) Characterization of low-molecular-weight metal species in plant extracts by using HPLC with pulsed amperometric detection and cyclic voltammetry. J Fresenius Anal Chem 362:209–214

    Article  CAS  Google Scholar 

  21. Panayi AE, Spyrou NM, Iversen BS, White MA, Part P (2002) Determination of cadmium and zinc in Alzheimer’s brain tissue using Inductively Coupled Plasma Mass Spectrometry. J Neurol Sci 195:1–10

    Article  CAS  PubMed  Google Scholar 

  22. Kim S, Noh JY, Kim KY, Kim JH, Kang HK, Nam SW, Kim SH, Park S, Kim C, Kim J (2012) Salicylimine-Based Fluorescent Chemosensor for Aluminum Ions and Application to Bioimaging. Inorg Chem 51:3597–3602

    Article  CAS  PubMed  Google Scholar 

  23. Lee JH, Kim HY, Kim SJ, Noh JY, Song EJ, Kim C, Kim JH (2013) Fluorescent dye containing phenol-pyridyl for selective detection of aluminum ions. Dyes Pigments 96:590–594

    Article  CAS  Google Scholar 

  24. Han TY, Feng X, Tong B, Shi BJ, Chen L, Zhi JG, Dong YP (2012) A novel “turn-on” fluorescent chemosensor for the selective detection of Al3+based on aggregation-induced emission. Chem Commun 48:416–418

    Article  CAS  Google Scholar 

  25. Li C, Zhou Y, Li Y, Zou C, Kong X (2013) Efficient FRET-based colorimetric and ratiometric fluorescent chemosensor for Al3+ in living cells. Sensor Actuat B-Chem 186:360–366

    Article  CAS  Google Scholar 

  26. Liu YW, Chen CH, Wu AT (2012) A turn-on and reversible fluorescence sensor for Al3+ ion. Analyst 137:5201–5203

    Article  CAS  PubMed  Google Scholar 

  27. Samanta S, Nath B, Baruah JB (2012) Hydrolytically stable Schiff base as highly sensitive aluminium sensor. Chem Commun 22:98–100

    CAS  Google Scholar 

  28. Liang CS, Bu WH, Li CL, Men GW, Deng MY, Jiangyao YK, Sun HC, Jiang SM (2015) A highly selective fluorescent sensor for Al3+ and the use of the resulting complex as a secondary sensor for PPi in aqueous media: its applicability in live cell imaging. Dalton Trans 44:11352–11359

    Article  CAS  PubMed  Google Scholar 

  29. Park JS, Jeong S, Dho S, Lee M, Song C (2010) Colorimetric sensing of Cu2+ using a cyclodextrin–dye rotaxane. Dyes Pigments 87:49–54

    Article  CAS  Google Scholar 

  30. Zeng X, Dong L, Wu C, Mu L, Xue SF, Tao Z (2009) Highly sensitive chemosensor for Cu(II) and Hg(II) based on the tripodal rhodamine receptor. Sensor Actuat B-Chem 141:506–510

    Article  CAS  Google Scholar 

  31. Zhou Y, Wang F, Kim Y, Kim SJ, Yoon J (2009) Cu2+-Selective Ratiometric and “Off-On” Sensor Based on the Rhodamine Derivative Bearing Pyrene Group. Org Lett 11:4442–4445

    Article  CAS  PubMed  Google Scholar 

  32. Xu Z, Xiao Y, Qian X, Cui J, Cui D (2005) Ratiometric and Selective Fluorescent Sensor for CuII Based on Internal Charge Transfer (ICT). Org Lett 7:889–892

    Article  CAS  PubMed  Google Scholar 

  33. Huang J, Xu Y, Qian X (2009) A colorimetric sensor for Cu2+ in aqueous solution based on metal ion-induced deprotonation: deprotonation/protonation mediated by Cu2+-ligand interactions. Dalton Trans 1761–1766

  34. Zhang JF, Zhou Y, Yoon J, Kim Y, Kim SJ, Kim JS (2010) Naphthalimide Modified Rhodamine Derivative: Ratiometric and Selective Fluorescent Sensor for Cu2+ Based on Two Different Approaches. Org Lett 12:3852–3855

    Article  CAS  PubMed  Google Scholar 

  35. Hsieh WH, Wan CF, Liao DJ, Wu AT (2012) A turn-on Schiff base fluorescence sensor for zinc ion. Tetrahedron Lett 53:5848–5851

    Article  CAS  Google Scholar 

  36. Jia TJ, Cao W, Zheng XJ, Jin LP (2013) A turn-on chemosensor based on naphthol–triazole for Al(III) and its application in bioimaging. Tetrahedron Lett 54:3471–3474

    Article  CAS  Google Scholar 

  37. Tiwari K, Mishra M, Singh VP (2013) A highly sensitive and selective fluorescent sensor for Al3+ ions based onthiophene-2-carboxylic acid hydrazide Schiff base. RSC Adv 3:12124–12132

    Article  CAS  Google Scholar 

  38. Guha S, Lohar S, Sahana A, Banerjee A, Safin DA, Babashkina MG, Mitoraj MP, Bolte M, Garcia Y, Mukhopadhyaye SK, Das D (2013) A coumarin-based “turn-on” fluorescent sensor for the determination of Al3+: single crystal X-ray structure and cell staining properties. Dalton Trans 42:10198–10207

    Article  CAS  PubMed  Google Scholar 

  39. Bojinov VB, Georgiev NI, Nikolov PS (2008) Synthesis and photophysical properties of fluorescence sensing ester- and amidoamine-functionalized 1,8-naphthalimides. J Photoch Photobio A 193:129–138

    Article  CAS  Google Scholar 

  40. Leng B, Zou L, Jiang J, Tian H (2009) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using chemodosimeter-functionalized gold nanoparticles. Sensor Actuat B-Chem 140:162–169

    Article  CAS  Google Scholar 

  41. Liu T, Zhang X, Qiao Q, Zou C, Feng L, Cui J, Xu Z (2013) A two-photon fluorescent probe for imaging hydrogen sulfide in living cells. Dyes Pigments 99:537–542

    Article  CAS  Google Scholar 

  42. Singh DP, Raghuvanshi DS, Singh KN, Singh VP (2013) Synthesis, characterization and catalytic application of some novel binuclear transition metal complexes of bis-(2-acetylthiophene) oxaloyldihydrazone for C-N bond formation. J Mol Catal A Chem 379:21–29

    Article  CAS  Google Scholar 

  43. Wang F, Xu YL, Aderinto SO, Peng HP, Zhang H, Wu HL (2017) A new highly effective fluorescent probe for Al3+ ions and its application in practical samples. J Photoch Photobio A 332:273–282

    Article  CAS  Google Scholar 

  44. Xu YL, Aderinto SO, Wu HL, Peng HP, Zhang H, Zhang JW, Fan XY (2017) A highly selective fluorescent chemosensor based on naphthalimide and Schiff base units for Cu2+ detection in aqueous medium. Z Naturforsch B 72:35–41

    Article  CAS  Google Scholar 

  45. Wu HL, Peng HP, Wang F, Zhang H, Chen CG, Zhang JW, Yang ZH (2017) Two 1,8- naphthalimides as proton-receptor fluorescent sensors for detecting pH. J Appl Spectrosc 83:931–937

    Article  CAS  Google Scholar 

  46. Aderinto SO, Zhang H, Wu HL, Chen CY, Zhang JW, Peng HP, Yang ZH, Wang F (2017a) Synthesis and studies of two proton–receptor fluorescent probes based on 1,8-naphthalimide. Color Technol 133:40–49

    Article  CAS  Google Scholar 

  47. Wu HL, Chen CY, Zhang H, Peng HP, Wang F, Yang ZH, Zhang JW (2016) Two 1,8-naphthalimide-based proton-receptor fluorescent probes for pH determination. Chem Pap 70:685–694

    Article  CAS  Google Scholar 

  48. Chovelon JM, Grabchev I (2007) A novel fluorescent sensor for metal cations and protons based of bis-1,8-naphthalimide. Spectrochim Acta A 67:87–91

    Article  Google Scholar 

  49. Aderinto SO, Xu YL, Peng HP, Wang F, Wu HL, Fan XY (2017b) A highly Selective Fluorescent Sensor for Monitoring Cu2+ Ion: Synthesis, Characterization and Photophysical Properties. J Fluoresc 27:79–87

    Article  CAS  PubMed  Google Scholar 

  50. Grabchev I, Qian X, Xiao Y, Zhang R (2002) Novel heterogeneous PET fluorescent sensors selective for transition metal ions or protons: polymers regularly labelled with naphthalimide. New J Chem 26:920

    Article  CAS  Google Scholar 

  51. Wee SS, Ng YH, Ng SM (2013) Synthesis of fluorescent carbon dots via simple acid hydrolysis of bovine serum albumin and its potential as sensitive sensing probe for lead (II) ions. Talanta 116:71–76

    Article  CAS  PubMed  Google Scholar 

  52. Dong WK, Li XL, Wang L, Zhang Y, Ding YJ (2016) A new application of Salamo-type bisoximes: As a relay–sensor for Zn2+/Cu2+ and its novel complexes for successive sensing of H+/OH−. Sensor Actuat B-Chem 229:370–378

    Article  CAS  Google Scholar 

  53. Dong WK, Akogun SF, Zhang Y, Sun YX, Dong XY (2017) A reversible “turn-on” fluorescent sensor for selective detection of Zn2+. Sensor Actuat B-Chem 238:723–734

    Article  CAS  Google Scholar 

  54. Benesi HA, Hildebrand JH (1949) A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  55. Thordarson P (2011) Determining association constants from titration experiments in supramolecular chemistry. Chem Soc Rev 40:1305–1323

    Article  CAS  PubMed  Google Scholar 

  56. Forgues SF, LeBris MT, Gutte JP, Valuer B (1988) Ion-responsive fluorescent compounds. 1. Effect of cation binding on photophysical properties of benzoxazinone derivative linked to monoaza-15-crown-5. J Phys Chem 92:6233–6237

    Article  Google Scholar 

  57. Lohani CR, Kim JM, Chung SY, Yoon J, Lee KH (2010) Colorimetric and fluorescent sensing of pyrophosphate in 100% aqueous solution by a system comprised of rhodamine B compound and Al3+ complex. Analyst 135:2079–2084

    Article  CAS  PubMed  Google Scholar 

  58. Wu HL, Wang CP, Zhang JW, Zhang YH, Chen CY, Yang ZH, Fan XY (2015) 1,8-Naphthalimide derivative-based turn-off fluorescent probe for the detection of picrate in organic aqueous media. Z Naturforsch B 70:863–869

    Article  CAS  Google Scholar 

  59. World Health Organization (2004) Guidelines for drinking water quality, third edn. World Health Organization, Geneva, p 301

    Google Scholar 

  60. Jisha B, Resmi MR, Maya RJ, Varma RL (2013) Colorimetric detection of Al(III) ions based on triethylene glycol appended 8-propyloxy quinoline ester. Tetrahedron Lett 54:4232–4236

    Article  CAS  Google Scholar 

  61. Sun Y, Hu JH, Qi J, Li JB (2016) A highly selective colorimetric and “turn-on” fluorimetric chemosensor for detecting CN based on unsymmetrical azine derivatives in aqueous media. Spectrochim Acta A 167:101–105

    Article  CAS  Google Scholar 

  62. Hu JH, Sun Y, Qi J, Li Q, Wei TB (2017) A new unsymmetrical azine derivative based on coumarin group asdual-modal sensor for CN and fluorescent “OFF–ON” for Zn2+. Spectrochim Acta A 175:125–133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present research was supported by the National Natural Science Foundation of China (Grant No. 21367017), Natural Science Foundation of Gansu Province (Grant No. 1212RJZA037) and Graduate Student Innovation Projects of Lanzhou Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huilu Wu.

Electronic supplementary material

ESM 1

(DOCX 226 kb)

CCDC 1490149 contains the supplementary crystallographic data for P-1. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Shen, K., Mao, S. et al. A Highly Selective and Sensitive Fluorescent Turn-on Probe for Al3+ Based on Naphthalimide Schiff Base. J Fluoresc 27, 1191–1200 (2017). https://doi.org/10.1007/s10895-017-2056-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2056-8

Keywords

Navigation