Skip to main content
Log in

Recognition of D-Penicillamine Using Schiff Base Centered Fluorescent Organic Nanoparticles and Application to Medicine Analysis

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Schiff base centered fluorescent organic compound 1,1′-[(1E,2E)-hydrazine-1,2-diylidenedi(E)methylylidene]- dinaphthalen-2-ol (HN) was synthesized followed by spectral characterization viz., NMR, IR and Mass spectroscopy. The fluorescent nanoparticles of HN prepared using reprecipitation method shows red shifted aggregation induced enhanced emission (AIEE) with respect to HN solution in acetone. The average particle size of nanoparticles (HNNPs) is of 67.2 nm shows sphere shape morphology. The surfactant cetyltrimethyl ammonium bromide (CTAB) used to stabilize HNNPs induces positive charge surface with zeta potential of 11.6 mV. The positive charge of HNNPs responsible to adsorb oppositely charged analyte on its surface with binding interactions. The fluorescence experiments performed with and without addition of different analytes to the aqueous suspension of HNNPs shows selective fluorescence quenching of HNNPs by D-Penicillamine (D-PA). The effect of other coexisting analytes does not affect the selective sensing behavior of D-PA. The mechanism of binding between HNNPs and D-PA was discussed on the basis of electrostatic interaction and adsorption phenomenon. The results interpreted by using DLS-Zeta sizer, Fluorescence lifetime measurements, conductometric titration supports the electrostatic adsorption between HNNPs and D-PA. The method has extremely low limit of detection (LOD) value 0.021 ppm is of significant as compared to reported methods. The proposed fluorescence quenching method was effectively used for quantitative estimation of D-PA from pharmaceutical medicine.

The fluorescence quenching based selective recognition of D-Penicillamine (D-PA) by using Schiff base centered fluorescent organic nanoparticles was developed and successfully applied to quantitative determination of D-PA from pharmaceutical samples viz. capsule and tablet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 2

Similar content being viewed by others

References

  1. Wang L, Xia TT, Bian GR (2005) Preparation and application of a novel core/shell organic nanoparticle as a fluorescence probe in the selective determination of Cr(VI). Spectrochim Acta Part A: Mol Biomol Spectrosc 62:565–569

    Article  Google Scholar 

  2. Li HB, Xu J, Yan H (2009) Ratiometric fluorescent determination of cysteine based on organic nanoparticles of naphthalene–thiourea–thiadiazole-linked molecule. Sensors Actuators B Chem 139:483–487

    Article  CAS  Google Scholar 

  3. Wang LY, Dong L, Wang L (2004) Application of organic nanoparticles as fluorescence probe in the determination of nucleic acids. Anal Lett 37:1811–1822

    Article  CAS  Google Scholar 

  4. Fu HB, Yao JN (2001) Size effects on the optical properties of organic nanoparticles. J Am Chem Soc 123:1434–1439

    Article  CAS  Google Scholar 

  5. Lei Y, Liao Q, Fu H, Yao J (2009) Phase- and shape-controlled synthesis of single crystalline perylene Nanosheets and its optical properties. J Phys Chem C 113:10038–10043

    Article  CAS  Google Scholar 

  6. Lim S, An B, Jung S, Chung M, Park S (2004) Photoswitchable organic nanoparticles and aPolymer film employing multifunctional molecules with enhanced fluorescence emission and Bistable Photochromism. Angew Chem Int Ed 43:6346–6350

    Article  CAS  Google Scholar 

  7. Zhang X, Zhang X, Wang S, Liu M, Tao L, Wei Y (2013) Surfactant modification of aggregation-induced emission material as biocompatible nanoparticles: facile preparation and cell imaging. Nanoscale 5:147–150

    Article  CAS  PubMed  Google Scholar 

  8. Suryawanshi SB, Mahajan PG, Bhopate DP, Kolekar GB, Patil SR, Bodake AJ (2016) Selective recognition of MnO4 ion in aqueous solution based on fluorescence enhancement by surfactant capped naphthalene nanoparticles: application to ultratrace determination of KMnO4 in treated drinking water. J Photochem Photobiol A Chem 329:255–261

    Article  CAS  Google Scholar 

  9. Mahajan PG, Bhopate DP, Kolekar GB, Patil SR (2015) N-methyl isatin nanoparticles as a novel probe for selective detection of Cd2+ ion in aqueous medium based on chelation enhanced fluorescence and application to environmental sample original research article. Sensors Actuators B Chem 220:864–872

    Article  CAS  Google Scholar 

  10. Mahajan PG, Bhopate DP, Kolekar GB, Patil SR (2016) FRET sensor for erythrosine dye based on organic nanoparticles: application to analysis of food stuff. J Fluoresc 26:1467–1478

    Article  CAS  PubMed  Google Scholar 

  11. An B, Lee D, Lee J, Park Y, Song H, Park SY (2004) Strongly fluorescent Organogel system comprising Fibrillar self-assembly of a Trifluoromethyl-based Cyanostilbene derivative. J Am Chem Soc 126:10232–10233

    Article  CAS  PubMed  Google Scholar 

  12. Dalavi DK, Kamble A, Bhopate DP, Mahajan PG, Kolekar GB, Patil SR (2015) TNPs as a novel fluorescent sensor for the selective recognition of fast green FCF: a spectrofluorimetric approach. RSC Adv 5:69371–69377

    Article  CAS  Google Scholar 

  13. Bhopate DP, Mahajan PG, Garadkar KM, Kolekar GB, Patil SR (2015) Polyvinyl pyrrolidone capped fluorescent anthracene nanoparticles for sensing fluorescein sodium in aqueous solution and analytical application for ophthalmic samples. Luminescence 30:1055–1063

    Article  CAS  PubMed  Google Scholar 

  14. Mahajan PG, Bhopate DP, Kamble AA, Dalavi DK, Kolekar GB, Patil SR (2015) Selective sensing of Fe2+ ions in aqueous solution based on fluorescence quenching of SDS capped rubrene nanoparticles: application in pharmaceutical formulation. Anal Methods 7:7889–7898

    Article  CAS  Google Scholar 

  15. Kwon E, Oikawa H, Kasai H, Nakanishi H (2007) A fabrication method of organic nanocrystals using stabilizer-free emulsion. Cryst Growth Des 7:600–602

    Article  CAS  Google Scholar 

  16. Li S, He L, Xiong F, Li Y, Yang G (2004) Enhanced fluorescent emission of organic nanoparticles of an intramolecular proton transfer compound and spontaneous formation of one-dimensional nanostructures. J Phys Chem B 108:10887–10892

    Article  CAS  Google Scholar 

  17. Yasukuni R, Hironaka T, Asahi T (2010) Preparation of perylenediimide nanoparticle colloids by laser ablation in water and their optical properties. Jpn J Appl Phys 49:06GJ04

    Article  Google Scholar 

  18. Dalavi DK, Bhopate DP, Bagawan AS, Gore AH, Desai NK, Kamble AA, Mahajan PG, Kolekar GB, Patil SR (2014) Fluorescence quenching studies of CTAB stabilized perylene nanoparticles for the determination of Cr(VI) from environmental samples: spectroscopic approach. Anal Methods 6:6948–6955

    Article  CAS  Google Scholar 

  19. Yildirim M, Kaya İ (2010) Synthesis of a novel fluorescent Schiff Base as a possible Cu(II) ion selective sensor. J Fluoresc 20:771–777

    Article  CAS  PubMed  Google Scholar 

  20. Yurtman Z, Gündüz C, Özpınar C, Aydın Urucu O (2015) A novel Schiff-base as a Cu(II) ion fluorescent sensor in aqueous solution. Spectrochim Acta Part A: Mol Biomol Spectrosc 136:1679–1683

    Article  Google Scholar 

  21. Cheng X, Wang M, Yang Z, Li Y, Li T, Liu C, Zhou Q (2013) A highly sensitive and selective Schiff base fluorescent chemodosimeter for aluminum(III). J Coord Chem 66:1847–1853

    Article  CAS  Google Scholar 

  22. Fan LJ, Jones WE (2006) A highly selective and sensitive inorganic/organic hybrid polymer fluorescence “turn-on” chemosensory system for iron cations. J Am Chem Soc 128:6784–6785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin L, Fang W, Yu Y, Huang R, Zheng L (2007) Selective recognition iodide in aqueous solution based on fluorescence enhancement chemosensor. Spectrochim Acta A 67:1403–1406

    Article  Google Scholar 

  24. Bieri M, Burgi T (2006) D-penicillamine adsorption on gold: an in situ ATR-IR spectroscopic and QCM study. Langmuir 22:8379–8386

    Article  CAS  PubMed  Google Scholar 

  25. Kean WF, Howard-Lock HE, Lock CJL (1991) Chirality in anti-rheumatic drugs. Lancet 338:1565–1568

    Article  CAS  PubMed  Google Scholar 

  26. Saracino MA, Cannistraci C, Bugamelli F, Morganti E, Neri I, Balestri R, Patrizi A, Raggi MA (2013) A novel HPLC-electrochemical detection approach for the determination of d-penicillamine in skin specimens. Talanta 103:355–360

    Article  CAS  PubMed  Google Scholar 

  27. Saetre R, Rabenstein DL (1978) Determination of penicillamine in blood and urine by high performance liquid chromatography. Anal Chem 50:276–280

    Article  CAS  Google Scholar 

  28. Cavrini V, Gatti R, Roveri P, Cesaroni MR (1988) Use of 4-(6-methylnaphthalen-2-yl)-4-oxobut-2-enoic acid as a reagent for the spectrophotometric and fluorimetric determination of aliphatic thiol drugs. Analyst 113:1447–1452

    Article  CAS  PubMed  Google Scholar 

  29. Walekar LS, Pawar SP, Kondekar UR, Gunjal DB, Anbhule PV, Patil SR, Kolekar GB (2015) Spectroscopic investigation of interaction between carbon quantum dots and D-penicillamine capped gold nanoparticles. J Fluoresc 25(4):1085–1093

    Article  CAS  PubMed  Google Scholar 

  30. Zhai Y, Zhuang H, Pei M, Zhang G, Li H (2015) The development of a conjugated polyelectrolytes derivative based fluorescence switch and its application in penicillamine detection. J Mol Liq 202:153–157

    Article  CAS  Google Scholar 

  31. Zhang LY, Tu FQ, Guo XF, Wang H, Wang P, Zhang HS (2014) A new BODIPY based long wavelength fluorescent probe for chromatographic analysis of low molecular weight thiols. Anal Bioanal Chem 406(26):6723–6733

    Article  CAS  PubMed  Google Scholar 

  32. Suliman FEO, Al-Lawati HAJ, Al-Kindy SMZ, Nour IEM, Salama SB (2003) A sequential injection spectrophotometric method for the determination of penicillamine in pharmaceutical products by complexation with iron(III) in acidic media. Talanta 61:221–231

    Article  CAS  PubMed  Google Scholar 

  33. Zhang ZD, Baeyens WRG, Zhang XR, Vander Weken G (1996) Chemiluminescence determination of penicillamine via flow injection applying a quinine–cerium(IV) system. Analyst 121:1569–1572

    Article  CAS  Google Scholar 

  34. Yang X, Yuan H, Wang C, Su X, Hu L, Xiao D (2007) Determination of penicillamine in pharmaceuticals and human plasma by capillary electrophoresis with in-column fiber optics light-emitting diode induced fluorescence detection. J Pharm Biomed Anal 45:362–366

    Article  CAS  PubMed  Google Scholar 

  35. Torriero AAJ, Piola HD, Martinez NA, Panini NV, Raba J, Silber JJ (2007) Enzymatic oxidation oftert-butylcatechol in the presence of sulfhydryl compounds: application to the amperometric detection of penicillamine. Talanta 71:1198–1204

    Article  CAS  PubMed  Google Scholar 

  36. Raoof JB, Ojani R, Chekin F (2009) Voltammetric sensor for d-penicillamine determination based on its electrocatalytic oxidation at the surface of ferrocenes modified carbon paste electrodes. J Chem Sci 121:1083–1091

    Article  CAS  Google Scholar 

  37. Naik RM, Prasad S, Kumar B, Chand V (2013) Kinetic assay of d-penicillamine in pure and pharmaceutical formulations based on ligand substitution reaction. Microchem J 111:97–102

    Article  CAS  Google Scholar 

  38. Mahajan PG, Desai NK, Dalavi DK, Bhopate DP, Kolekar GB, Patil SR (2015) Cetyltrimethylammonium bromide capped 9-Anthraldehyde nanoparticles for selective recognition of phosphate anion in aqueous solution based on fluorescence quenching and application for analysis of Chloroquine. J Fluoresc 25:31–38

    Article  CAS  PubMed  Google Scholar 

  39. Lyklema J (1995) Fundamentals of Interface and colloid science. Elsevier, Wageningen

    Google Scholar 

  40. Khot MS, Desai NK, Kolekar GB, Patil SR (2011) Fluorescence enhancement effect for the determination of adenosine 5′-monophosphate with 9-anthracene carboxylic acid-Cetyl Trimethyl ammonium bromide system. J Fluoresc 21:1997–2003

    Article  CAS  PubMed  Google Scholar 

  41. Bhopate DP, Mahajan PG, Garadkar KM, Kolekar GB, Patil SR (2014) Pyrene nanoparticles as a novel FRET probe for detection of rhodamine 6G: spectroscopic ruler for textile effluent. RSC Adv 4:63866–63874

    Article  CAS  Google Scholar 

  42. Long GL, Winefordner JD (1983) Limit of detection a closer look at the IUPAC definition. Anal Chem 55:712A–724A

    Article  CAS  Google Scholar 

  43. Patil KS, Mahajan PG, Patil SR (2017) Fluorimetric detection of Sn2+ ion in aqueous medium using Salicylaldehyde based nanoparticles and application to natural samples analysis. Spectrochim Acta A Mol Biomol Spectrosc 170:131–137

    Article  CAS  PubMed  Google Scholar 

  44. Wang P, Li BL, Li NB, Luo HQ (2015) A fluorescence detection of dpenicillamine based on Cu2+ induced fluorescence quenching system of proteinstabilized gold nanoclusters. Spectrochim Acta A Mol Biomol Spectrosc 135:198–202

    Article  CAS  PubMed  Google Scholar 

  45. Shaalan RA (2010) Improved spectrofluorimetric methods for determination of penicillamine in capsules. Cent Eur J Chem 8(4):892–898

    CAS  Google Scholar 

  46. Suliman FEO, AlLawati ZH, AlKindy SMZ (2008) A spectrofluorimetric sequential injection method for the determination of penicillamine using fluorescamine in the presence of βcyclodextrins. J Fluoresc 18(6):1131–1138

    Article  CAS  PubMed  Google Scholar 

  47. Li BL, Luo JH, Luo HQ, Li NB (2013) A novel strategy for selective determination of d-penicillamine based on molecularly imprinted polypyrrole electrode via the electrochemical oxidation with ferrocyanide. Sensors Actuators B 186:96–102

    Article  CAS  Google Scholar 

  48. Zeeba M, Ganjalia MR, Norouzia P, Moeinossadat SR (2009) Selective determination of penicillamine by on-line vapor-phase generation combined with Fourier transform infrared spectrometry. Talanta 78:584–589

    Article  Google Scholar 

  49. Corominas BG, Pferzschner J, Icardo MC, Zamora LL, Calatayud JM (2005) In situ generation of Co(II) by use of a solid-phase reactor in an FIA assembly for the spectrophotometric determination of penicillamine. J Pharm Biomed Anal 39:281–284

    Article  CAS  PubMed  Google Scholar 

  50. Seery MK, Fay N, McCormac T, Dempsey E, Forster RJ, Keyes TE (2005) Photophysics of ruthenium polypyridyl complexes formed with lacunary polyoxotungstates with iron addenda. Phys Chem Chem Phys 7:3426–3433

  51. Lakowicz JR (2007) Principles of Fluorescence Spectroscopy, 3rd edn Springer Science & Business Media

  52. Mahajan PG, Kolekar GB, Patil SR (2017) Fluorescence‐based logic gate for sensing of Ca2+and F−ionsusing PVP crowned chrysene nanoparticles in aqueousmedium. Luminescence. doi:10.1002/bio.326210

Download references

Acknowledgements

One of the authors PGM is grateful to the University Grants Commission (UGC), New Delhi for providing financial assistance in the form of UGC-BSR-SAP fellowship (F.25-1/2013-14(BSR)/7-183/2007(BSR)- May 2014). We are also grateful to the Department of Science and Technology (DST), New Delhi for providing funds under FIST-Level-II program for infrastructure improvement and University Grants Commission (UGC), New Delhi for financial support through DRS - Phase- II program to the Department of Chemistry, Shivaji University, Kolhapur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivajirao R. Patil.

Electronic supplementary material

ESM 1

(DOCX 1250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, P.G., Kolekar, G.B. & Patil, S.R. Recognition of D-Penicillamine Using Schiff Base Centered Fluorescent Organic Nanoparticles and Application to Medicine Analysis. J Fluoresc 27, 829–839 (2017). https://doi.org/10.1007/s10895-016-2019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-2019-5

Keywords

Navigation