Skip to main content
Log in

Correlation Between Molecular Modelling and Spectroscopic Techniques in Investigation With DNA Binding Interaction of Ruthenium(II) Complexes

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The DNA binding studies of rutheniumu(II) polypyridyl complexes {[Ru(phen)2Mipc]2+, [Ru(bpy)2Mipc]2+, [Ru(dmb)2Mipc]2+, [Ru(phen)2BrIPC]2+, [Ru(bpy)2BrIPC]2+, [Ru(dmb)2BrIPC]2+, [Ru(phen)2PIP-Cl]2+, [Ru(bpy)2PIP-Cl]2+, [Ru(dmb)2PIP-Cl]2+, [Ru(phen)2IPPBA]2+, [Ru(bpy)2IPPBA]2+, [Ru(dmb)2IPPBA]2+} with DNA investigated by electronic absorption titration, emission and molecular modelling studies to identify the binding interactions. All these complexes are showing good binding constant values ~104 to 105. The intercalative ligands makes the binding of the ruthenium(II) complex with DNA as intercalation mode. The ancillary ligands 1,10-phenanthroline (phen), 4,4′-Dimethyl-2,2′-dipyridyl (dmb) and 2,2′-dipyridine (bpy) having been discovered found to be involved in bond formation with the phosphate backbone of nucleotide base pairs in ruthenium(II) complex–DNA docked complex. The molecular docking results are good agreement with experimental results. The molecular modelling technic should help to extend knowledge about the nature (or) mode of binding of these ruthenium(II) complexes with (calf thymus) CT-DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lengauer T, Rarey M (1996) Computational methods for biomolecular docking. Curr Opin Struct Biol 6:402–406

    Article  CAS  PubMed  Google Scholar 

  2. Kontoyianni M, McClellan LM, Sokol GS (2004) Evaluation of docking performance: comparative data on docking algorithms. J Med Chem 47:558–565

    Article  CAS  PubMed  Google Scholar 

  3. Kalanur SS, Katrahalli U, Seetharamappa J (2009) Electrochemical studies and spectroscopic investigations on the interaction of an anticancer drug with DNA and their analytical applications. J Electroanal Chem 636:93–100

    Article  CAS  Google Scholar 

  4. Chen K, Adelstein SJ, Kassis AI (2004) Molecular modeling of the interaction of iodinated Hoechst analogs with DNA: implications for new radiopharmaceutical design. J Mol Struct 711:49–56

    Article  CAS  Google Scholar 

  5. Lerman LS (1961) Structural considerations in the interaction of DNA and acridines. J Mol Biol 3:18–30

    Article  CAS  PubMed  Google Scholar 

  6. Waring MJ (1965) Complex formation between ethidium bromide and nucleic acids. J Mol Biol 13:269–282

    Article  CAS  PubMed  Google Scholar 

  7. Crawford LV, Waring MJ (1967) Supercoiling of polyoma virus DNA measured by its interaction with ethidium bromide. J Mol Biol 25:23–30

    Article  CAS  PubMed  Google Scholar 

  8. Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46:2287–2303

    Article  CAS  PubMed  Google Scholar 

  9. Srishailam A, Gabra NM, Kumar YP, Reddy KL, Devi CS, Kumar DA, Singh SS, Satyanarayana S (2014) Synthesis, characterization; DNA binding and antitumor activity of ruthenium(II) polypyridyl complexes. J Photochem Photobiol B 141:47–58

    Article  CAS  PubMed  Google Scholar 

  10. Srishailam A, Kumar YP, Gabra NMD, Reddy PV, Deepika N, Veerababu N, Satyanarayana S (2013) Synthesis, DNA-binding, cytotoxicity, photo cleavage, antimicrobial and docking studies of Ru(II) polypyridyl complexes. J Fluoresc 23:897–908

    Article  CAS  PubMed  Google Scholar 

  11. Gabra NM, Mustafa B, Kumar YP, Devi CS, Shilpa M, Reddy KL, Satyanarayana S (2014) DNA-binding and cleavage, cytotoxicity properties of Ru(II) complexes with 2-(4′-chloro-phenyl) imidazo[4,5-f][1,10]phenanthroline, ligand and their “light switch” on–off effect. Med Chem Res 23:224–235

    Article  CAS  Google Scholar 

  12. Gabra NM, Mustafa B, Kumar YP, Devi CS, Srishailam A, Reddy PV, Reddy KL, Satyanarayana S (2014) Synthesis, characterization, DNA binding studies, photocleavage, cytotoxicity and docking studies of ruthenium(II) light switch complexes. J Fluoresc 24:169–181

    Article  CAS  PubMed  Google Scholar 

  13. Scott J, Chouai A, Monro S, Parrish A, Zong R, Thummel RP, McFarland SA (2010) Inorg Chem 49:2889–2900

    Article  PubMed  Google Scholar 

  14. Morgan RJ, Chatterjee S, Baker AD, Strekas TC (1991) Effects of ligand planarity and peripheral charge on intercalative binding of Ru(2,2′-bipyridine)2L2+ to calf thymus DNA. Inorg Chem 30:2687–2692

    Article  CAS  Google Scholar 

  15. Tysoe SA, Morgan RJ, Baker AD, Stelkas TC (1993) Spectroscopic investigation of differential binding modes of.DELTA.- and.LAMBDA.-Ru(bpy)2(ppz)2+ with calf thymus DNA. J Phys Chem 97:1707–1711

    Article  CAS  Google Scholar 

  16. Tan LF, Chao H, Li H, Liu Y-J, Sun B, Wei W, Ji L-N (2005) Synthesis, characterization, DNA-binding and photocleavage studies of [Ru(bpy)2(PPIP)]2+ and [Ru(phen)2(PPIP)]2+. J Inorg Biochem 99:513–520

    Article  CAS  PubMed  Google Scholar 

  17. Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, Barton JK (1989) Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. J Am Chem Soc 111:3051–3058

    Article  CAS  Google Scholar 

  18. Wolfe A, Shimer GH, Mechan T (1987) Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry 26:6392–6396

    Article  CAS  PubMed  Google Scholar 

  19. McGhee JD, Hippel PHV (1974) Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol 86:469–489

    Article  CAS  PubMed  Google Scholar 

  20. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161:269–288

    Article  CAS  PubMed  Google Scholar 

  21. Kuntz ID, Leach AR (1992) Conformational analysis of flexible ligands in macromolecular receptor sites. J Comput Chem 13:730–748

    Article  Google Scholar 

  22. Ewing TJ, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule database. J Comput Aided Mol Des 15:411–428

    Article  CAS  PubMed  Google Scholar 

  23. Shoichet BK, Stroud RM, Santi DV, Kuntz ID, Perry KM (1993) Structure-based discovery of inhibitors of thymidylate synthase. Science 259:1445–1450

    Article  CAS  PubMed  Google Scholar 

  24. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein–ligand docking using GOLD. Proteins Struct Funct Genet 52:609–623

    Article  CAS  PubMed  Google Scholar 

  25. Jayaraju A, Sreeramulu J (2016) Design, synthesis, molecular docking and biological evaluation of dopamine carbamodithiolates metal complexes. J Adv Chem Sci 2:289–292

    Google Scholar 

  26. Paul N, Rognan D (2002) ConsDock: A new program for the consensus analysis of protein–ligand interactions. Proteins Struct Funct Genet 47:521

    Article  CAS  PubMed  Google Scholar 

  27. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  28. Bursulaya BD, Totrov M, Abagyan R, Brooks CL (2003) Comparative study of several algorithms for flexible ligand docking. J Comput Aided Mol Des 17:755–763

    Article  CAS  PubMed  Google Scholar 

  29. Knegtel RMA, Wagener M (1999) Efficacy and selectivity in flexible database docking. Proteins Struct Funct Genet 37:334–345

    Article  CAS  PubMed  Google Scholar 

  30. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  31. Jones G, Willet P, Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 245:43–53

    Article  CAS  PubMed  Google Scholar 

  32. Gabra NM, Mustafa B, Vidhisha S, Reddy MR, Reddy KL, Satyanarayana S (2013) DNA binding studies, light switch, photocleavage, in vitro cytotoxicity, antibacterial and docking studies of Ru(II)/Co(III) complexes. Int J Pharm Sci Rev Res 21:115–124

    CAS  Google Scholar 

  33. Hulzebos EM, Janssen PAH, Maslankiewicz L, Meijerink MCM, Muller JJA, Pelgrom SMG, Verdam L, Vermeire TG (2001) The application of structure-activity relationships in human hazard assessment: a first approach. RIVM Report No 601516008

  34. Netzeva TI, Worth A, Aldenberg T, Benigni R, Cronin MTD, Gramatica P, Jaworska JS, Kahn S, Klopman G, Marchant CA et al (2005) Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. The report and recommendations of ECVAM Workshop 52. Altern Lab Anim 33:1–19

    Google Scholar 

  35. Gregory S, Kothiwale S, Meiler J, Lowe EW Jr (2014) Computational methods in drug discovery. Pharmacol Rev 66:334–394

    Google Scholar 

  36. Tropsha A, Gramatica P, Gombar V (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22:69–77

    Article  CAS  Google Scholar 

  37. Haq I, Ladbury J (2000) Drug–DNA recognition: energetics and implications for design. J Mol Recognit 13:188–197

    Article  CAS  PubMed  Google Scholar 

  38. Proudfoot EM, Mackay JP, Karuso P (2001) Probing site specificity of DNA binding metallointercalators by NMR spectroscopy and molecular modeling. Biochemistry 40:4867–4878

    Article  CAS  PubMed  Google Scholar 

  39. Arjmand F, Parveen S, Afzal M, Toupet L, Hadda TB (2012) Molecular drug design, synthesis and crystal structure determination of CuII–SnIV heterobimetallic core: DNA binding and cleavage studies. Eur J Med Chem 49:141–150

    Article  CAS  PubMed  Google Scholar 

  40. Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, Von Zelewsky A (1988) Ru (II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coord Chem Rev 84:85–277

    Article  CAS  Google Scholar 

  41. Nagababu P, Latha JNL, Satyanarayana S (2006) DNA-binding studies of mixed-ligand (Ethylenediamine)ruthenium(II) complexes. Chem Biodivers 3:1219–1229

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penumaka Nagababu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thulasiram, B., devi, C.S., Kumar, Y.P. et al. Correlation Between Molecular Modelling and Spectroscopic Techniques in Investigation With DNA Binding Interaction of Ruthenium(II) Complexes. J Fluoresc 27, 587–594 (2017). https://doi.org/10.1007/s10895-016-1986-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1986-x

Keywords

Navigation