Skip to main content
Log in

Non-Doped Deep Blue and Doped White Electroluminescence Devices Based on Phenanthroimidazole Derivative

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel deep-blue emitter PhImPOTD based on phenathroimidazole was synthesized, which is incorporated by an electron-donating dibenzothiophene unit and electron-withdrawing phenanthroimidazole and diphenylphosphine oxide moieties. Furthermore, the weak π–π stacking and intermolecular aggregation render the photoluminescence quantum yield is as high as 0.34 in the solid state. Non-doped organic light emitting diodes (OLEDs) based on PhImPOTD emitter exhibits a low turn-on voltage of 3.6 V, a favorable efficiency of 1.13 cd A−1 and a deep blue emission with Commission Internationale de l’Eclairage (CIE) coordinates of (0.15, 0.08). The CIE is very close to the NTSC (National Television Standards Committe) blue standard (CIE: 0.14, 0.08). PhImPOTD is also utilized as blue emitter and the host for a yellow emitter (PO-01) to fabricate white organic light-emitting diodes (WOLEDs). This gives a forward-viewing maximum CE of 4.83 cd A−1 and CIE coordinates of (0.32, 0.32) at the luminance of 1000 cd m−2. Moreover, the single-carrier devices unambiguously demonstrate that typical bipolar-dominant characteristics of PhImPOTD. This work demonstrates not only that the phenanthroimidazole unit is an excellent building block to construct deep blue emission materials, but also the introduction of a diphenylphosphine oxide deprotonation substituent is an efficient tactic for harvesting deep-blue emitting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lee CW, Lee JY (2013) Above 30% external quantum efficiency in blue phosphorescent organic light-emitting diodes using pyrido[2,3-b]indole derivatives as host materials. Adv Mater 25:5450–5454

    Article  CAS  PubMed  Google Scholar 

  2. Liu Z, Qi W, Xu G (2015) Recent advances in electrochemiluminescence. Chem Soc Rev 44:3117–3142

    Article  CAS  PubMed  Google Scholar 

  3. Lee CW, Lee JY (2015) Systematic control of photophysical properties of host materials for high quantum efficiency above 25% in green thermally activated delayed fluorescent devices. ACS Appl Mater Interfaces 7:2899–2904

    Article  CAS  PubMed  Google Scholar 

  4. Lee DR, Hwang SH, Jeon SK, Lee CW, Lee JY (2015) Benzofurocarbazole and benzothienocarbazole as donors for improved quantum efficiency in blue thermally activated delayed fluorescent devices. Chem Commun 51:8105–8107

    Article  CAS  Google Scholar 

  5. Choy WC, Chan WK, Yuan Y (2014) Recent advances in transition metal complexes and light-management engineering in organic optoelectronic devices. Adv Mater 26:5368–5398

    Article  CAS  PubMed  Google Scholar 

  6. Hung WY, Chiang PY, Lin SW, Tang WC, Chen YT, Liu SH, Chou PT, Hung YT, Wong KT (2016) Balance the carrier mobility to achieve high performance exciplex OLED using a triazine-based acceptor. ACS Appl Mater Interfaces 8:4811–4818

    Article  CAS  PubMed  Google Scholar 

  7. Hatakeyama T, Shiren K, Nakajima K, Nomura S, Nakatsuka S, Kinoshita K, Ni J, Ono Y, Ikuta T (2016) Ultrapure blue thermally activated delayed fluorescence molecules: efficient HOMO–LUMO separation by the multiple resonance effect. Adv Mater 28:2777–2781

    Article  CAS  PubMed  Google Scholar 

  8. Ivaniuk K, Cherpak V, Stakhira P, Hotra Z, Minaev B, Baryshnikov G, Stromylo E, Volyniuk D, Grazulevicius JV, Lazauskas A, Tamulevicius S, Witulski B, Light ME, Gawrys P, Whitby RJ, Wiosna-Salyga G, Luszczynska B (2016) Highly luminous sky-blue organic light-emitting diodes based on the bis[(1,2)(5,6)]indoloanthracene emissive layer. J Phys Chem C 120:6206–6217

    Article  CAS  Google Scholar 

  9. Lee J, Chen HF, Batagoda T, Coburn C, Djurovich PI, Thompson ME, Forrest SR (2016) Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency. Nat Mater 15:92–98

    Article  CAS  PubMed  Google Scholar 

  10. Gong S, Yang C, Qin J (2012) Efficient phosphorescent polymer light-emitting diodes by suppressing triplet energy back transfer. Chem Soc Rev 41:4797–4807

    Article  CAS  PubMed  Google Scholar 

  11. Volz D, Wallesch M, Fléchon C, Danz M, Verma A, Navarro JM, Zink DM, Bräse S, Baumann T (2015) From iridium and platinum to copper and carbon: new avenues for more sustainability in organic light-emitting diodes. Green Chem 17:1988–2011

    Article  CAS  Google Scholar 

  12. Lee J, Park J (2015) Synthesis and electroluminescence of novel pyrene-fused chromophores. Org Lett 17:3960–3963

    Article  CAS  PubMed  Google Scholar 

  13. Kim JB, Han SH, Yang K, Kwon SK, Kim JJ, Kim YH (2015) Highly efficient deep-blue phosphorescence from heptafluoropropyl-substituted iridium complexes. Chem Commun 51:58–61

    Article  CAS  Google Scholar 

  14. Huang J, Sun N, Chen P, Tang R, Li Q, Ma D, Li Z (2014) Largely blue-shifted emission through minor structural modifications: molecular design, synthesis, aggregation-induced emission and deep-blue OLED application. Chem Commun 50:2136–2138

    Article  CAS  Google Scholar 

  15. Hua W, Liu Z, Duan L, Dong G, Qiu Y, Zhang B, Cui D, Tao X, Cheng N, Liu Y (2015) Deep-blue electroluminescence from nondoped and doped organic light-emitting diodes (OLEDs) based on a new monoaza[6]helicene. RSC Adv 5:75–84

    Article  CAS  Google Scholar 

  16. Lee J, Kim B, Kwon JE, Kim J, Yokoyama D, Suzuki K, Nishimura H, Wakamiya A, Park SY, Park J (2014) Excimer formation in organic emitter films associated with a molecular orientation promoted by steric hindrance. Chem Commun 50:14145–14148

    Article  CAS  Google Scholar 

  17. Han C, Zhang Z, Xu H, Li J, Xie G, Chen R, Zhao Y, Huang W (2012) Controllably tuning excited-state energy in ternary hosts for ultralow-voltage-driven blue electrophosphorescence. Angew Chem Int Ed 51:10104–10108

    Article  CAS  Google Scholar 

  18. Tao Y, Xiao J, Zheng C, Zhang Z, Yan M, Chen R, Zhou X, Li H, An Z, Wang Z, Xu H, Huang W (2013) Dynamically adaptive characteristics of resonance variation for selectively enhancing electrical performance of organic semiconductors. Angew Chem Int Ed 52:10491–10495

    Article  CAS  Google Scholar 

  19. Zhang Y, Lai SL, Tong QX, Lo MF, Ng TW, Chan MY, Wen ZC, He J, Jeff KS, Tang XL, Liu WM, Ko CC, Wang PF, Lee CS (2012) High efficiency nondoped deep-blue organic light emitting devices based on imidazole-π-triphenylamine derivatives. Chem Mater 24:61–70

    Article  Google Scholar 

  20. Wang K, Zhao F, Wang C, Chen S, Chen D, Zhang H, Liu Y, Ma D, Wang Y (2013) High-performance red, green, and blue electroluminescent devices based on blue emitters with small singlet–triplet splitting and ambipolar transport property. Adv Funct Mater 23:2672–2680

    Article  CAS  Google Scholar 

  21. Li W, Liu D, Shen F, Ma D, Wang Z, Feng T, Xu Y, Yang B, Ma Y (2012) A twisting donor-acceptor molecule with an intercrossed excited state for highly efficient, deep-blue electroluminescence. Adv Funct Mater 22:2797–2803

    Article  CAS  Google Scholar 

  22. Chou HH, Chen YH, Hsu HP, Chang WH, Chen YH, Cheng CH (2012) Synthesis of diimidazolylstilbenes as n-type blue fluorophores: alternative dopant materials for highly efficient electroluminescent devices. Adv Mater 24:5867–5871

    Article  CAS  PubMed  Google Scholar 

  23. Lee W, Yang Y, Cho N, Ko J, Hong JI (2012) Functionalized organic dyes containing a phenanthroimidazole donor for dye-sensitized solar cell applications. Tetrahedron 68:5590–5598

    Article  CAS  Google Scholar 

  24. Wang ZM, Song XH, Gao Z, Yu DW, Zhang XJ, Lu P, Shen FZ, Ma YG (2012) Tuning of the electronic and optical properties of 4,4′-bis(1-phenylphenanthro[9,10-d]imidazol-2-yl)biphenyl via cyano substitution in un-conjugated phenyl. RSC Adv 2:9635–9642

    Article  CAS  Google Scholar 

  25. Zhuang S, Shangguan R, Jin J, Tu G, Wang L, Chen J, Ma D, Zhu X (2012) Efficient nondoped blue organic light-emitting diodes based on phenanthroimidazole-substituted anthracene derivatives. Org Electron 13:3050–3059

    Article  CAS  Google Scholar 

  26. Gao Z, Liu Y, Wang Z, Shen F, Liu H, Sun G, Yao L, Lv Y, Lu P, Ma Y (2013) High-efficiency violet-light-emitting materials based on phenanthro[9,10-d]imidazole. Chem Eur J 19:2602–2605

    Article  CAS  PubMed  Google Scholar 

  27. Huang H, Wang Y, Wang B, Zhuang S, Pan B, Yang X, Wang L, Yang C (2013) Controllably tunable phenanthroimidazole–carbazole hybrid bipolar host materials for efficient green electrophosphorescent devices. J Mater Chem C 1:5899–5908

    Article  CAS  Google Scholar 

  28. Chen S, Wu Y, Zhao Y, Fang D (2015) Deep blue organic light-emitting devices enabled by bipolar phenanthro[9,10-d]imidazole derivatives. RSC Adv 5:72009–72018

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A02, Gaussian, Inc, Wallingford CT

  30. Becke AD (1993) Density-functional thermochemistry. III the role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  32. Yuan Y, Chen JX, Lu F, Tong QX, Yang QD, Mo HW, Ng TW, Wong FL, Guo ZQ, Ye J, Chen Z, Zhang XH, Lee CS (2013) Bipolar phenanthroimidazole derivatives containing bulky polyaromatic hydrocarbons for nondoped blue electroluminescence devices with high efficiency and low efficiency roll-off. Chem Mater 25:4957–4965

    Article  CAS  Google Scholar 

  33. Qin W, Yang Z, Jiang Y, Lam JWY, Liang G, Kwok HS, Tang BZ (2015) Construction of efficient deep blue aggregation-induced emission luminogen from triphenylethene for nondoped organic light-emitting diodes. Chem Mater 27:3892–3901

    Article  CAS  Google Scholar 

  34. Fan C, Duan C, Wei Y, Ding D, Xu H, Huang W (2015) Dibenzothiophene-based phosphine oxide host and electron-transporting materials for efficient blue thermally activated delayed fluorescence diodes through compatibility optimization. Chem Mater 27:5131–5140

    Article  CAS  Google Scholar 

  35. Gao Z, Cheng G, Shen F, Zhang S, Zhang Y, Lu P, Ma Y (2014) Highly efficient deep blue light emitting devices based on triphenylsilane modified phenanthro[9,10-d]imidazole. Laser Photonics Rev 8:L6–L10

    Article  CAS  Google Scholar 

  36. Gao Z, Wang Z, Shan T, Liu Y, Shen F, Pan Y, Zhang H, He X, Lu P, Yang B, Ma Y (2014) High-efficiency deep blue fluorescent emitters based on phenanthro[9,10-d]imidazole substituted carbazole and their applications in organic light emitting diodes. Org Electron 15:2667–2676

    Article  CAS  Google Scholar 

  37. Tanaka H, Shizu K, Lee J, Adachi C (2015) Effect of atom substitution in chalcogenodiazole-containing thermally activated delayed fluorescence emitters on radiationless transition. J Phys Chem C 119:2948–2955

    Article  CAS  Google Scholar 

  38. Farinola GM, Ragni R (2011) Electroluminescent materials for white organic light emitting diodes. Chem Soc Rev 40:3467–3482

    Article  CAS  PubMed  Google Scholar 

  39. Peng T, Yang Y, Bi H, Liu Y, Hou Z, Wang Y (2011) Highly efficient white organic electroluminescence device based on a phosphorescent orange material doped in a blue host emitter. J Mater Chem 21:3551–3553

    Article  CAS  Google Scholar 

  40. Chen Z, Liu XK, Zheng CJ, Ye J, Liu CL, Li F, Ou XM, Lee CS, Zhang XH (2015) High performance exciplex-based fluorescence − phosphorescence white organic light-emitting device with highly simplified structure. Chem Mater 27:5206–5211

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support by National Natural Science Foundation of China (Grant No. 111572002) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 11521202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daining Fang.

Additional information

Shuo Chen and Yukun Wu These authors contributed equally.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Wu, Y., Hu, S. et al. Non-Doped Deep Blue and Doped White Electroluminescence Devices Based on Phenanthroimidazole Derivative. J Fluoresc 27, 451–461 (2017). https://doi.org/10.1007/s10895-016-1970-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1970-5

Keywords

Navigation