Skip to main content
Log in

Disorder Amidst Membrane Order: Standardizing Laurdan Generalized Polarization and Membrane Fluidity Terms

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Membrane organization and fluidity research continues to expand and the understanding of membrane dynamics continues to be refined. Within this field of study, laurdan remains among the most popular, versatile, and established fluorescence probes. Fluorimetry and multiphoton microscopy techniques are standards for measuring laurdan fluorescence and continue to be refined. However, complications have arisen due to an amended membrane model, revised terms used for describing membrane phases, and wide variation in the selection of laurdan generalized polarization equation values. Here, in the context of the history and chemical properties of laurdan, discrepancies are highlighted and important recommendations are made to promote uniformity and ongoing progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

LUT:

Look-up table

DOPC:

Dioleoyl phosphatidyl choline

SM:

Sphingomyelin

Lo:

Liquid ordered

Ld:

Liquid disordered

SUV:

Small unilamellar vesicle

LUV:

Large unilamellar vesicle

GUV:

Giant unilamellar vesicle

GPMV:

Giant plasma membrane vesicles

FA:

Fatty acid

GP:

Generalized polarization

PM:

Plasma membrane

RU:

Relative units

References

  1. Klymchenko AS, Kreder R (2014) Fluorescent probes for lipid rafts: from model membranes to living cells. Chem Biol 21:97–113

    Article  CAS  PubMed  Google Scholar 

  2. Bagatolli LA (2006) To see or not to see: lateral organization of biological membranes and fluorescence microscopy. Biochim Biophys Acta 1758:1541–1556

    Article  CAS  PubMed  Google Scholar 

  3. Gaus K, Zech T, Harder T (2006) Visualizing membrane microdomains by laurdan 2-photon microscopy. Mol Membr Biol 23:41–48

    Article  CAS  PubMed  Google Scholar 

  4. Owen DM, Rentero C, Magenau A, Abu-Siniyeh A, Gaus K (2012) Quantitative imaging of membrane lipid order in cells and organisms. Nat Protoc 7:24–35

    Article  CAS  Google Scholar 

  5. Weber G, Farris FJ (1979) Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry 18:3075–3078

    Article  CAS  PubMed  Google Scholar 

  6. MacGregor, R., and Weber, G. (1981) Fluorophores in polar media: spectral effects of the Langevin distribution of electrostatic interactions. Ann NY Acad Sci 140–154

  7. Jurkiewicz P, Cwiklik L, Jungwirth P, Hof M (2012) Lipid hydration and mobility: an interplay between fluorescence solvent relaxation experiments and molecular dynamics simulations. Biochimie 94:26–32

    Article  CAS  PubMed  Google Scholar 

  8. Mitra K, Ubarretxena-Belandia I, Taguchi T, Warren G, Engelman DM (2004) Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc Natl Acad Sci U S A 101:4083–4088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu W, So PT, French T, Gratton E (1996) Fluorescence generalized polarization of cell membranes: a two-photon scanning microscopy approach. Biophys J 70:626–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sotomayor CP, Aguilar LF, Cuevas FJ, Helms MK, Jameson DM (2000) Modulation of pig kidney Na+/K + −ATPase activity by cholesterol: role of hydration. Biochemistry 39:10928–10935

    Article  CAS  PubMed  Google Scholar 

  11. Samuni AM, Lipman A, Barenholz Y (2000) Damage to liposomal lipids: protection by antioxidants and cholesterol-mediated dehydration. Chem Phys Lipids 105:121–134

    Article  CAS  PubMed  Google Scholar 

  12. Suga K, Yokoi T, Kondo D, Hayashi K, Morita S, Okamoto Y, Shimanouchi T, Umakoshi H (2014) Systematical characterization of phase behaviors and membrane properties of fatty acid/didecyldimethylammonium bromide vesicles. Langmuir: the ACS journal of surfaces and colloids 30:12721–12728

    Article  CAS  Google Scholar 

  13. Budin I, Debnath A, Szostak JW (2012) Concentration-driven growth of model protocell membranes. J Am Chem Soc 134:20812–20819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roche Y, Klymchenko AS, Gerbeau-Pissot P, Gervais P, Mely Y, Simon-Plas F, Perrier-Cornet JM (2010) Behavior of plant plasma membranes under hydrostatic pressure as monitored by fluorescent environment-sensitive probes. Biochim Biophys Acta 1798:1601–1607

    Article  CAS  PubMed  Google Scholar 

  15. Gaus K, Gratton E, Kable EP, Jones AS, Gelissen I, Kritharides L, Jessup W (2003) Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci U S A 100:15554–15559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Le Lay S, Li Q, Proschogo N, Rodriguez M, Gunaratnam K, Cartland S, Rentero C, Jessup W, Mitchell T, Gaus K (2009) Caveolin-1-dependent and -independent membrane domains. J Lipid Res 50:1609–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mamdouh Z, Giocondi MC, Le Grimellec C (1998) In situ determination of intracellular membrane physical state heterogeneity in renal epithelial cells using fluorescence ratio microscopy. Eur Biophys J 27:341–351

    Article  CAS  PubMed  Google Scholar 

  18. Dodes Traian MM, Gonzalez Flecha FL, Levi V (2012) Imaging lipid lateral organization in membranes with C-laurdan in a confocal microscope. J Lipid Res 53:609–616

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sitrin RG, Sassanella TM, Landers JJ, Petty HR (2010) Migrating human neutrophils exhibit dynamic spatiotemporal variation in membrane lipid organization. Am J Respir Cell Mol Biol 43:498–506

    Article  CAS  PubMed  Google Scholar 

  20. Kovacs E, Savopol T, Iordache MM, Saplacan L, Sobaru I, Istrate C, Mingeot-Leclercq MP, Moisescu MG (2012) Interaction of gentamicin polycation with model and cell membranes. Bioelectrochemistry 87:230–235

    Article  CAS  PubMed  Google Scholar 

  21. Kahn E, Baarine M, Dauphin A, Ragot K, Tissot N, Seguin A, Menetrier F, Kattan Z, Bachelet CM, Frouin F, Lizard G (2011) Impact of 7-ketocholesterol and very long chain fatty acids on oligodendrocyte lipid membrane organization: evaluation via LAURDAN and FAMIS spectral image analysis. Cytometry Part A: the journal of the International Society for Analytical Cytology 79:293–305

    Article  Google Scholar 

  22. Weber P, Wagner M, Schneckenburger H (2010) Fluorescence imaging of membrane dynamics in living cells. J Biomed Opt 15:046017

    Article  PubMed  Google Scholar 

  23. Antollini SS, Barrantes FJ (2002) Unique effects of different fatty acid species on the physical properties of the torpedo acetylcholine receptor membrane. J Biol Chem 277:1249–1254

    Article  CAS  PubMed  Google Scholar 

  24. Buffone MG, Doncel GF, Calamera JC, Verstraeten SV (2009) Capacitation-associated changes in membrane fluidity in asthenozoospermic human spermatozoa. Int J Androl 32:360–375

    Article  CAS  PubMed  Google Scholar 

  25. Shentu TP, Titushkin I, Singh DK, Gooch KJ, Subbaiah PV, Cho M, Levitan I (2010) oxLDL-induced decrease in lipid order of membrane domains is inversely correlated with endothelial stiffness and network formation. Am J Physiol Cell Physiol 299:C218–C229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Parasassi T, Loiero M, Raimondi M, Ravagnan G, Gratton E (1993) Absence of lipid gel-phase domains in seven mammalian cell lines and in four primary cell types. Biochim Biophys Acta 1153:143–154

    Article  CAS  PubMed  Google Scholar 

  27. Georget E, Kapoor S, Winter R, Reineke K, Song Y, Callanan M, Ananta E, Heinz V, Mathys A (2014) In situ investigation of Geobacillus stearothermophilus spore germination and inactivation mechanisms under moderate high pressure. Food Microbiol 41:8–18

    Article  PubMed  Google Scholar 

  28. Simonin H, Bergaoui IM, Perrier-Cornet JM, Gervais P (2014) Cryopreservation of Escherichia coli K12TG1: protection from the damaging effects of supercooling by freezing. Cryobiology ​70(2):115–121

  29. Golfetto O, Hinde E, Gratton E (2013) Laurdan fluorescence lifetime discriminates cholesterol content from changes in fluidity in living cell membranes. Biophys J 104:1238–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brejchova J, Sykora J, Dlouha K, Roubalova L, Ostasov P, Vosahlikova M, Hof M, Svoboda P (2011) Fluorescence spectroscopy studies of HEK293 cells expressing DOR-Gi1alpha fusion protein; the effect of cholesterol depletion. Biochim Biophys Acta 1808:2819–2829

    Article  CAS  PubMed  Google Scholar 

  31. Parasassi T, Gratton E, Yu WM, Wilson P, Levi M (1997) Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys J 72:2413–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sykora J, Bourova L, Hof M, Svoboda P (2009) The effect of detergents on trimeric G-protein activity in isolated plasma membranes from rat brain cortex: correlation with studies of DPH and laurdan fluorescence. Biochim Biophys Acta 1788:324–332

    Article  CAS  PubMed  Google Scholar 

  33. Garda HA, Bernasconi AM, Brenner RR, Aguilar F, Soto MA, Sotomayor CP (1997) Effect of polyunsaturated fatty acid deficiency on dipole relaxation in the membrane interface of rat liver microsomes. Biochim Biophys Acta 1323:97–104

    Article  CAS  PubMed  Google Scholar 

  34. Sezgin E, Kaiser HJ, Baumgart T, Schwille P, Simons K, Levental I (2012) Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nat Protoc 7:1042–1051

    Article  CAS  PubMed  Google Scholar 

  35. Parasassi T, De Stasio G, d'Ubaldo A, Gratton E (1990) Phase fluctuation in phospholipid membranes revealed by laurdan fluorescence. Biophys J 57:1179–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, Jacobson K, Gratton E (2001) Lipid rafts reconstituted in model membranes. Biophys J 80:1417–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. M'Baye G, Mely Y, Duportail G, Klymchenko AS (2008) Liquid ordered and gel phases of lipid bilayers: fluorescent probes reveal close fluidity but different hydration. Biophys J 95:1217–1225

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bagatolli LA, Parasassi T, Fidelio GD, Gratton E (1999) A model for the interaction of 6-lauroyl-2-(N,N-dimethylamino)naphthalene with lipid environments: implications for spectral properties. Photochem Photobiol 70:557–564

    Article  CAS  PubMed  Google Scholar 

  39. Owen DM, Gaus K (2013) Imaging lipid domains in cell membranes: the advent of super-resolution fluorescence microscopy. Front Plant Sci 4:503

    Article  PubMed  PubMed Central  Google Scholar 

  40. van Ginkel G, van Langen H, Levine YK (1989) The membrane fluidity concept revisited by polarized fluorescence spectroscopy on different model membranes containing unsaturated lipids and sterols. Biochimie 71:23–32

    Article  PubMed  Google Scholar 

  41. Guo W, Kurze V, Huber T, Afdhal NH, Beyer K, Hamilton JA (2002) A solid-state NMR study of phospholipid-cholesterol interactions: sphingomyelin-cholesterol binary systems. Biophys J 83:1465–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang Q, Alemany R, Casas J, Kitajka K, Lanier SM, Escriba PV (2005) Influence of the membrane lipid structure on signal processing via G protein-coupled receptors. Mol Pharmacol 68:210–217

    CAS  PubMed  Google Scholar 

  43. Parasassi T, Krasnowska E, Bagatolli L, Gratton E (1998) Laurdan and prodan as polarity-sensitive fluorescent membrane probes. J Fluoresc 8(4):365–373

  44. Parasassi T, Giusti AM, Gratton E, Monaco E, Raimondi M, Ravagnan G, Sapora O (1994) Evidence for an increase in water concentration in bilayers after oxidative damage of phospholipids induced by ionizing radiation. Int J Radiat Biol 65:329–334

    Article  CAS  PubMed  Google Scholar 

  45. Bacalum M, Zorila B, Radu M (2013) Fluorescence spectra decomposition by asymmetric functions: laurdan spectrum revisited. Anal Biochem 440:123–129

    Article  CAS  PubMed  Google Scholar 

  46. Stepniewski M, Bunker A, Pasenkiewicz-Gierula M, Karttunen M, Rog T (2010) Effects of the lipid bilayer phase state on the water membrane interface. J Phys Chem B 114:11784–11792

    Article  CAS  PubMed  Google Scholar 

  47. Pasachoff J, Filippenko A (2007) The cosmos: astronomy in the new millennium. Thompson Higher Education, 3rd Ed. Brooks/Cole Publishing, p 480

  48. Mély Y, Duportail G, Bagatolli LA (2013) Fluorescent methods to study biological membranes. Springer, Heidelberg, New York

    Book  Google Scholar 

  49. Demchenko AP, Mely Y, Duportail G, Klymchenko AS (2009) Monitoring biophysical properties of lipid membranes by environment-sensitive fluorescent probes. Biophys J 96:3461–3470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Parisio G, Marini A, Biancardi A, Ferrarini A, Mennucci B (2011) Polarity-sensitive fluorescent probes in lipid bilayers: bridging spectroscopic behavior and microenvironment properties. J Phys Chem B 115:9980–9989

    Article  CAS  PubMed  Google Scholar 

  51. Kaiser HJ, Lingwood D, Levental I, Sampaio JL, Kalvodova L, Rajendran L, Simons K (2009) Order of lipid phases in model and plasma membranes. Proc Natl Acad Sci U S A 106:16645–16650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Krasnowska EK, Gratton E, Parasassi T (1998) Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases. Biophys J 74:1984–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Catalan J, Perez P, Laynez J, Blanco FG (1991) Analysis of the solvent effect on the photophysics properties of 6-propionyl-2-(dimethylamino)naphthalene (PRODAN). J Fluoresc 1:215–223

    Article  CAS  PubMed  Google Scholar 

  54. Cerezo F, Rocafort SC, Sierra PS, Garcia-Blanco F, Oliva CD, Sierra JC (2001) Photophysical study of the probes acrylodan (1-[6-(dimethylamino)naphthalen-2-yl]prop-2-en-1-one), ANS (8-anilinonaphthalene- 1-sulfonate) and prodan (1-[6-(dimethylamino)naphthalen- 2-yl]propan-1-1) in aqueous mixtures of various alcohols. Helv Chim Acta 84:3306–3312

    Article  CAS  Google Scholar 

  55. Tagliaferri G, Salvaterra R, Campana S, Covino S, D'Avanzo P, Fugazza D, Ghirlanda G, Ghisellini G, Melandri A, Nava L, Sbarufatti B, Vergani S (2013) A complete sample of long bright Swift gamma ray bursts. Philosophical transactions Series A, Mathematical, physical, and engineering sciences 371:20120235

    Article  PubMed  Google Scholar 

  56. Kang L, Zhao Q, Zhao H, Zhou J (2008) Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods. Opt Express 16:8825–8834

    Article  CAS  PubMed  Google Scholar 

  57. Kastorna A, Trusova V, Gorbenko G, Kinnunen P (2012) Membrane effects of lysozyme amyloid fibrils. Chem Phys Lipids 165:331–337

    Article  CAS  PubMed  Google Scholar 

  58. Maitani Y, Nakamura A, Tanaka T, Aso Y (2012) Hydration of surfactant-modified and PEGylated cationic cholesterol-based liposomes and corresponding lipoplexes by monitoring a fluorescent probe and the dielectric relaxation time. Int J Pharm 427:372–378

    Article  CAS  PubMed  Google Scholar 

  59. Luciani P, Bombelli C, Colone M, Giansanti L, Ryhanen SJ, Saily VM, Mancini G, Kinnunen PK (2007) Influence of the spacer of cationic gemini amphiphiles on the hydration of lipoplexes. Biomacromolecules 8:1999–2003

    Article  CAS  PubMed  Google Scholar 

  60. Soderlund T, Alakoskela JM, Pakkanen AL, Kinnunen PK (2003) Comparison of the effects of surface tension and osmotic pressure on the interfacial hydration of a fluid phospholipid bilayer. Biophys J 85:2333–2341

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Hamilton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jay, A.G., Hamilton, J.A. Disorder Amidst Membrane Order: Standardizing Laurdan Generalized Polarization and Membrane Fluidity Terms. J Fluoresc 27, 243–249 (2017). https://doi.org/10.1007/s10895-016-1951-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1951-8

Keywords

Navigation