Skip to main content
Log in

Estimation of Ground-State and Singlet Excited-State Dipole Moments of Substituted Schiff Bases Containing Oxazolidin-2-one Moiety through Solvatochromic Methods

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Absorption and fluorescence studies on novel Schiff bases (E)-4-(4-(4-nitro benzylideneamino)benzyl)oxazolidin-2-one (NBOA) and (E)-4-(4-(4-chlorobenzylidene amino)benzyl)oxazolidin-2-one (CBOA) were recorded in a series of twelve solvents upon increasing polarity at room temperature. Large Stokes shift indicates bathochromic fluorescence band for both the molecules. The photoluminescence properties of Schiff bases containing electron withdrawing and donating substituents were analyzed. Intramolecular charge transfer behavior can be studied based on the influence of different substituents in Schiff bases. Changes in position and intensity of absorption and fluorescence spectra are responsible for the stabilization of singlet excited-states of Schiff base molecules with different substituents, in polar solvents. This is attributed to the Intramolecular charge transfer (ICT) mechanism. In case of electron donating (−Cl) substituent, ICT contributes largely to positive solvatochromism when compared to electron withdrawing (−NO2) substituent. Ground-state and singlet excited-state dipole moments of NBOA and CBOA were calculated experimentally using solvent polarity function approaches given by Lippert–Mataga, Bakhshiev, Kawskii-Chamma-Viallet and Reichardt. Due to considerable π- electron density redistribution, singlet excited-state dipole moment was found to be greater than ground-state dipole moment. Ground-state dipole moment value which was determined by quantum chemical method was used to estimate excited-state dipole moment using solvatochromic correlations. Kamlet-Abboud-Taft and Catalan multiple linear regression approaches were used to study non-specific solute-solvent interaction and hydrogen bonding interactions in detail. Optimized geometry and HOMO-LUMO energies of NBOA and CBOA have been determined by DFT and TD-DFT/PCM (B3LYP/6-311G (d, p)). Mulliken charges and molecular electrostatic potential have also been evaluated from DFT calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ohshima A, Momotake A, Arai T (2004) Photochromism, thermochromism, and solvatochromism of naphthalene-based analogues of salicylidene aniline in solution. Photochem Photobiol A 162:473–479

    Article  CAS  Google Scholar 

  2. Pinna R, Jamme F, Rutten FJM, Smith EF, Willis MR, Briggs D, McCoustra MRS (2006) Towards a fully optimised organic LED device: analysis of surface synthesis using coupling reactions by ToF-SIMS. Appl Surf Sci 252:6672–6675

    Article  CAS  Google Scholar 

  3. Jang YK, Nam UC, Kwon HL, Hwang IH, Kim C (2013) A colorimetric “naked-eye” Cu(II) chemosensor and pH indicator in an 100 % aqueous solution. Dyes Pigments 99:6–13

    Article  CAS  Google Scholar 

  4. Soltani N, Behpour M, Ghoreishi SM, Naeimi H (2010) Corrosion inhibition of mild steel in hydrochloric acid solution by some double Schiff bases. Corros Sci 52:1351–1361

    Article  CAS  Google Scholar 

  5. Durmus S, Atahan A, Zengin M (2011) Synthesis, characterization and electrochemical behavior of some Ni(II), Cu(II), Co(II) and Cd(II) complexes of ONS type tridentate Schiff base ligand. Spectrochim Acta Part A 84:1–5

    Article  CAS  Google Scholar 

  6. Cozzi PG (2004) Metal–Salen Schiff base complexes in catalysis: practical aspects. Chem Soc Rev 33:410–421

    Article  CAS  PubMed  Google Scholar 

  7. Iwan A, Sek D (2008) Processible polyazomethines and polyketanils: from aerospace to light-emitting diodes and other advanced applications. Prog Polym Sci 33:289–345

    Article  CAS  Google Scholar 

  8. Avupati VR, Yejella RP, Parala VR, Killari KN, Papasani VMR, Cheepurupalli P, Gavalapu VR, Boddeda B (2013) Synthesis, characterization and in vitro biological evaluation of some novel 1,3,5-triazine-Schiff base conjugates as potential antimycobacterial agents. Bioorg Med Chem Lett 23:5968–5970

    Article  CAS  PubMed  Google Scholar 

  9. Moura KCG, Carneiro PF, Pinto MCFR, Silva JA, Malta VRS, Simone CA, Dias GG, Jardim GAM, Cantos J, Coelho TS, Silva PEA, Silva EN (2012) 1,3-azoles from ortho-naphthoquinones: synthesis of aryl substituted imidazoles and oxazoles and their potent activity against mycobacterium tuberculosis. Bioorg Med Chem 20:6482–6488

    Article  CAS  PubMed  Google Scholar 

  10. Kumar A, Ahmad P, Maurya RA, Singh AB, Srivastava AK (2009) Novel 2-aryl-naphtho[1, 2-d] oxazole derivatives as potential PTP-1B inhibitors showing antihyperglycemic activities. Eur J Med Chem 44:109–116

    Article  CAS  PubMed  Google Scholar 

  11. Fernandez GJM, Portilla FD, Garcia BQ, Toscano RA, Salcedo R (2001) The synthesis, X-ray and DFT structures of the free ansa–cyclopentadiene ligand. J Mol Struct 561

  12. Sajan D, Joe IH, Zaleski J, Jayakumar VS (2006) Structural and electronic contributions to hyperpolarizability in methyl p-hydroxy benzoate. J Mol Struct 785:43–53

    Article  CAS  Google Scholar 

  13. Sajan D, Hubert Joe I, Jayakumar VS (2006) NIR-FT Raman, FT-IR and surfaceenhanced Raman scattering spectra of organic nonlinear optic material: phydroxy Acetophenone. J Raman Spectrosc 37:508–519

    Article  CAS  Google Scholar 

  14. Sajan D, Ravindra HJ, Misra N, Joe IH (2010) Intramolecular charge transfer and hydrogen bonding interactions of nonlinear optical material Nbenzoyl glycine: vibrational spectral study. Vib Spectrosc 54:72–80

    Article  CAS  Google Scholar 

  15. Desfrancois C, Carles S, Schermann JP (2000) Weakly bound clusters of biological interest. Chem Rev 100:3943–3962

    Article  CAS  PubMed  Google Scholar 

  16. Tezer N, Karakus N (2009) Theoretical study on the ground state intramolecular proton transfer (IPT) and solvation effect in two Schiff bases formed by 2-aminopyridine with 2-hydroxy-1- naphthaldehyde and 2-hydroxy salicylaldehyd. J Mol Model 15:223–232

    Article  CAS  PubMed  Google Scholar 

  17. Hadjoudis E, Vittorakis M, Mavridis IM (1987) Photochromism and thermochromism of schiff bases in the solid state and in rigid glasses. Tetrahedron 43

  18. Perun S, Sobolewski AL, Domcke W (2006) Role of electron-driven proton-transfer processes in the excited-state deactivation of the adenine-thymine base pair. J Phys Chem A 110:9031–9038

    Article  CAS  PubMed  Google Scholar 

  19. Czekella J (1960) Dektrische Fluoreszenpolarization: die bestimmungvondipolmomenten angeregter molecule ausdempolarisationsgradderfloureszenz in starkenelectrischen eldern. Z. Electrochem 64:1221–1228

    Google Scholar 

  20. Kawski A, Kuklinski B, Bojarski P (2005) Dipole moment of aniline in the excited S1 state from thermochromic effect on electronic spectra. Chem Phys Lett 415:251–255

    Article  CAS  Google Scholar 

  21. Lombardi JR (1969) Comparison of molecular dipole moments determined by vapor phase and solid state stark spectroscopy. J Chem Phys 50

  22. Czekella J (1961) Zweielektro-optische method enzurbestmmungvon dipole momenten angeregter molkule. Chimia:1526–1531

  23. Hass MP, Warman JM (1982) Photon-induced molecular charge separation studied by Nano second time-resolved microwave conductivity. Chem Phys 73:35–53

    Article  Google Scholar 

  24. Raikar US, Renuka CG, Nadaf YF, Mulimani BG, Karguppikar AM, Soudagar MK (2006) Solvent effects on the absorption and fluorescence spectra of coumarins 6 and 7 molecules: determination of ground and excited state dipole moment. Spectrochim Acta A 65:673–678

    Article  CAS  Google Scholar 

  25. Reichardt C (1988) Solvents and Solvent Effects in Organic Chemistry, Second edn. VCH, Weinheim, Germany

    Google Scholar 

  26. Melavanki RM, Patil HD, Umapathy S, Kadadevarmath JS (2012) Solvatochromic effect on the Photophysical properties of two Coumarins. J Fluoresc 22:137–144

    Article  CAS  PubMed  Google Scholar 

  27. Siddlingeshwar B, Hanagodimath SM (2009) Estimation of first excited singlet-state dipole moments of aminoanthraquinones by solvatochromic method. Spectrochim Acta A 72:490–495

    Article  CAS  Google Scholar 

  28. Sasirekha V, Umadevi M, Ramakrishnan V (2008) Solvatochromic study of 1,2 dihydroxyanthraquinone in neat and binary solvent mixtures. Spectrochim Acta A:148–155

  29. Petke JD, Butler P, Maggiora GM (1985) Int J Quantum Chem 27:71–87

    Article  CAS  Google Scholar 

  30. Acemioglu B, Arik M, Efeoglu H, Onganer Y (2001) Solvent Effect on the Ground and Excited State Dipole Moments of Fluorescein. J MolStruct (Theochem) 548:165–171

    Article  CAS  Google Scholar 

  31. Aaron JJ, Tines A, Gaye MD, Parkanyi C, Boniface TC, Bieze TWN (1991) Effects of solvent on the electronic absorption and fluorescence spectra of quinazolines, and determination of their ground and excited singlet-state dipole moments. Spectrochim. Acta Part A 47:419–430

    Google Scholar 

  32. Parkanyi C, Stem-Beren MR, Martinez OR, Aaron JJ, MacNair MB, Arrieta AF (2004) Solvatochromic correlations and ground- and excited-state dipole moments of curcuminoid dyes. Spectrochim Acta Part A 60:1805–1810

    Article  Google Scholar 

  33. Biradar DS, Siddingeshwar B, Hanagodimath SM (2008) Estimation of ground and excited state dipole moments of some laser dyes. J MolStruct 875:108–112

    Article  CAS  Google Scholar 

  34. Thipperudrappa J, Biradar DS, Manohara SR, Hanagodimath SM, Inamadar SR, Manekutla RJ (2011) Solvent effects on the absorption M. Homocianu et al. / Journal of Advanced Research (2008) in Physics and fluorescence spectra of some laser dyes: Estimation of ground and excited-state dipole moments Spectrochim. Acta Part A 69:991–997

    Article  Google Scholar 

  35. Ghazy R, Azim SA, Shaheen M, Mekawey FE (2004) Experimental studies on the determination of the dipole moments of some different laser dyes. Spectrochim Acta Part A 60:187–191

    Article  CAS  Google Scholar 

  36. Mataga N, Kaifu Y, Koizumi M (1956) Solvent Effects Upon Fluorescence Spectra and the Dipole moments of Excited Molecules. Bull Chem Soc Jpn 29:465–470

    Article  CAS  Google Scholar 

  37. Bakhshiev NG (1964) Universal intermolecular interactions and their effect on the position the electronic spectra of molecules in two component solutions. Opt Spektrosk 16:821–832

    CAS  Google Scholar 

  38. Chamma A, Viallet P (1970) Comptes Rendus de Academie des Sciences Serie (C) 27:1901–1904

    Google Scholar 

  39. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358

    Article  CAS  Google Scholar 

  40. Becke AD (1993) Density-functional thermochemistry. The role of exact exchange III. J Chem Phys 98:5648–5650

    Article  CAS  Google Scholar 

  41. Lide DR (1995) Handbook of Chemistry and Physics, 76th edn. CRC Press, Boca Raton

    Google Scholar 

  42. Kamlet MJ, Abboud JLM, Abraham MH, Taft RW (1983) Linear solvation energy relationship, a comprehensive collection of the Solvatochromic parameters and some methods for simplifying the generalized Solvatochromic equation. J Org Chem 48:2877–2887

    Article  CAS  Google Scholar 

  43. Catalan J, Hopf H (2004) Empirical treatment of the inductive and dispersive components of solute-solvent interactions: the solvent polarizability (SP) scale. Eur J Org Chem:4694–4702

  44. Melhuish WH (1961) Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescent solute. J Phys Chem 65:229–235

    Article  CAS  Google Scholar 

  45. Suppan P (1983) Excited-state dipole moments from absorption/fluorescence solvatochromicratios. Chem Phys Lett 3:272–275

    Article  Google Scholar 

  46. Udhayakala P (2015) Quantum chemical studies on the inhibition potentials of thiophene derivatives for the corrosion inhibitors of carbon steel. J Chem Pharm Res 7:803–810

    CAS  Google Scholar 

  47. Anwar TM, Mohammed MM (2014) Spectral characterization and charge-transfer complexes of some schiff bases derived from amino pyridines and hydroxyl acetophenones. Iraqi J Sci 55:1127–1136

    Google Scholar 

Download references

Acknowledgments

We wish to thank Sravan Kumar Perumalla, Department of IPC, IISc, Bengaluru, for providing the facility for Gaussian based computational studies. We thank NMR Centre, IISc, Bengaluru, India, Anthem Biosciences, Bengaluru, India and STIC, Cochin University of Science & Technology Cochin for the spectral analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anitha Varghese.

Electronic supplementary material

ESM 1

(DOCX 22 kb)

ESM 2

(DOCX 22 kb)

ESM 3

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, R., Varghese, A. & George, L. Estimation of Ground-State and Singlet Excited-State Dipole Moments of Substituted Schiff Bases Containing Oxazolidin-2-one Moiety through Solvatochromic Methods. J Fluoresc 27, 151–165 (2017). https://doi.org/10.1007/s10895-016-1942-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1942-9

Keywords

Navigation