Skip to main content
Log in

Sonoelectrochemical Synthesis of Nano Zinc (II) Complexes with 9-Anthracenecarboxylic Acid: Effect of Current Density and Study of their Photophysical Properties

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new zinc complex, [Zn (9-AC)2] (1) (9-AC = 9-anthracenecarboxylic acid), was prepared via conventional electrochemical method in a fast and facile process and fully characterized by 1H NMR, 13C NMR, IR spectroscopy and elemental analysis. The nano structures of the same compound were successfully produced by a facile and environment-friendly sonoelectrochemical route at different current densities (0.5, 1.2, 1.8, 2.5 and 3.5 mA/cm2). The new nano-structure particles were characterized by scanning electron microscopy, X-ray powder diffraction, IR spectroscopy and elemental analysis. Thermal stability of single crystal and nano-size samples of the prepared compound was studied by thermogravimetric and differential thermal analysis. The comparison of the effect of current density without and with ultrasonic irradiation on particle size has been investigated in convectional electrochemical and sonoelectrochemical method respectively. The results showed that using ultrasonic irradiation with increasing the current density lead to decrease the particle sizes unlike conventional electrochemical method. In other words, when the current density increase from 0.5 to 3.5 mA/cm2, in sonoelectrochemical method, the particle sizes decrease from 100 to 48 nm while, in convectional electrochemical method, the particle sizes increase from 400 to 1200 nm and possible explanation offered. Photoluminescence properties of the nano-structured and crystalline bulk of the prepared complex at room temperature in the solid state have been investigated in detail. The results indicate that the size of the complex particles has an important effect on their optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. AI B (2000) Metals and neuroscience. Curr Opin Chem Biol 4:184–191

    Article  Google Scholar 

  2. Outten CE, O'Halloran TV (2001) Femtomolar sensitivity of Metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492

    Article  CAS  PubMed  Google Scholar 

  3. Finnery LA, O'Halloran TV (2003) Transition metal speciation in the cell- insights from the chemistry of metal ion receptors. Science 300:931–936

    Article  Google Scholar 

  4. lopez-Garcia C, Varea E, Palop JJ, Nacher J, Ramirez C, Ponsoda X, Molowny A (2002) Cytochemical techniques for zinc and heavy metals localization in nerve cells. Microsc Res Tech 56:318–331

    Article  CAS  PubMed  Google Scholar 

  5. Chae HK, Siberio-Perez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, O'Keeffe M, Yaghi OM (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:523–527

    Article  CAS  PubMed  Google Scholar 

  6. Liu YH, Liu YL, HC W, Wang JC, KL L (2002) A robust, thermally stable porous framework through a combination of a 2-D grid and a cadmium Dicarboxylate cluster chain (H2bpdc = 2,2′-Bipyridyl-4,4′-dicarboxylic acid. Inorg Chem 41:2592–2597

    Article  CAS  PubMed  Google Scholar 

  7. Shahrjerdi A, Hosseiny Davarani SS, Najafi E, Amini MM (2015) Sonoelectrochemical synthesis of a new nano lead(II) complex with quinoline-2-carboxylic acid ligand: a precursor to produce pure phase nano-sized lead(II) oxide. Ultrason Sonochem 22:382–390

    Article  CAS  PubMed  Google Scholar 

  8. Dolatyari L, Seddigi P, Ramazani A, Amiri MG, Morsali A (2013) A new Zn(II) complex of unusal unidentate coordination of 4,4'-Bipyridine, a new precursor for the preparation of zinc(II) oxide nanoparticles. J Struct Chem 54:571–576

    Article  CAS  Google Scholar 

  9. Wang JJ, Liu CS, TL H, Chang Z, Li CY, Yan LF, Chen PQ, XH B, Wu Q, Zhao LJ, Wang Z, Zhang XZ (2008) Zinc(II) coordination architectures with two bulky anthracene-based carboxylic ligands: crystal structures and luminescent properties. Cryst Eng Comm 10:681–692

    Article  Google Scholar 

  10. Rashidi Ranjbar Z, Morsali A, Retailleau P (2011) Thermolysis preparation of zinc(II) oxide nanoparticles from a new micro-rods one-dimentional zinc(II) coordination polymer synthesized by ultrasonic method. Inorg Chim Acta 376:486–491

    Article  Google Scholar 

  11. Mehrabi A, Morsali A, Ebrahimpour P (2013) Synthesis and structural characterization of zinc(II) coordination compounds with pyterpy; new precursors for preparation of zinc(II) oxide nano-particles with different morphologies. J Coord Chem 66:856–867

    Article  Google Scholar 

  12. Shi HT, Qi LM, Ma JM, Cheng HM (2003) Polymer-directed synthesis of penniform BaWO4 nanostructures in reverse micelles. J Am Chem Soc 125:3450–3451

    Article  CAS  PubMed  Google Scholar 

  13. Zhang H, Yang DR, Li DS, Ma XY, Li SZ, Que DL (2005) Controllable growth of ZnO microcrystals by a capping-molecule-assisted hydrothermal process. Cryst Growth Des 5:547–550

    Article  CAS  Google Scholar 

  14. Kuang DB, AW X, Fang YP, Liu HQ, Frommen C, Fenske D (2003) Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process. Adv Mater 15:1747–1750

    Article  CAS  Google Scholar 

  15. Kim F, Connor S, Song H, Kuykendall T, Yang PD (2004) Platonic gold nanocrystals. Angew Chem Int Ed 43:3673–3677

    Article  CAS  Google Scholar 

  16. Morsali A, Mahjoub AR (2005) Structural influence of counter-ions in lead (II) complexes: [Pb(phen)n(NO2)X], X = CH3COO−, NCS− and, phen =1,10-phenanthroline. Solid State Sci 7:1429–1437

    Article  CAS  Google Scholar 

  17. Sadeghzadeh H, Morsali A, Yilmaz VT, Büyükgüngör O (2010) Sonochemical syntheses of strawberry-like nano-structure mixed-ligand lead(II) coordination polymer- thermal, structural and X-ray. Inorg Chim Acta 363:841–845

    Article  CAS  Google Scholar 

  18. Aboutorabi L, Morsali A (2010) Sonochemical synthesis of a new nano-plate lead(II) coordination polymer constructed of maleic acid. Inorg Chim Acta 363:2506

    Article  CAS  Google Scholar 

  19. Diring S (2010) Chem Mater 22:4531–4538

  20. Rashidi Ranjbar Z, Morsali A (2009) Sonochemical syntheses of a new nano-sized porous lead(II) coordination polymer as precursor for preparation of lead(II) oxide nanoparticles. J Mol Struct 936:206–212

    Article  Google Scholar 

  21. Shahrjerdi A, Hosseiny Davarani SS, Amini MM, Najafi E, Janghouri M, Mohajerani E, Dehpour A (2014) Sonoelectrochemical synthesis of a nanoscale complex of lead(II) and 2-methyl-8-hydroxyquinoline: spectroscopic, photoluminescence, thermal analysis studies and its application in an OLED. J Mater Sci 49:441–449

    Article  CAS  Google Scholar 

  22. Stefan Kooij E, Poelsema B (2006) Shape and size effects in the optical properties of metallic nanorods. Phys Chem Chem Phys 8:3349–3357

    Article  CAS  PubMed  Google Scholar 

  23. Hua Y, Changenet-Barret P, Gustavsson T, Markovitsi D (2013) The effect of size on the optical properties of guanine nanostructures: a femtosecond to nanosecond study. Phys Chem Chem Phys 15:7396–7402

    Article  CAS  PubMed  Google Scholar 

  24. Habeeb JJ, Tuck DC, Walters FH (1978) Direct electrochemical synthesis of some metal chelate complexes. J Coord Chem 8:27–33

    Article  CAS  Google Scholar 

  25. Compton RG, Eklund JC, Marken F (1997) Sonoelectrochemical processes: A review. Electrophoresis 9:509–522

    CAS  Google Scholar 

  26. Sáez V, Mason TJ (2009) Sonoelectrochemical synthesis of nanoparticles. Molecules 14:4284–4299

    Article  PubMed  Google Scholar 

  27. Suslick KS, Choe SB, Cichowlas AA, Grinstaff MW (1991) Sonochemical synthesis of amorphous iron. Nature 353:414–416

    Article  CAS  Google Scholar 

  28. Cognet P, Wilhelm AM, Delmas H, Lyazidi HA, Fabre PL (2000) Ultrasound in organic electrosynthesis. Ultrason Sonochem 7:163–167

    Article  CAS  PubMed  Google Scholar 

  29. Sharma A, Sanjay KP (2012) Synthesis and characterization of CeO-ZnO nanocomposites. Nanosci Nanotechnol 2:82–85

    Article  Google Scholar 

  30. Segala K, Dutra RL, Franco CV, Pereira AS, Trindadeb T (2010) In situ and ex situ preparations of ZnO/poly-{trans-[RuCl2 (vpy)4]/styrene} nanocomposites. J Braz Chem Soc 21:1986–1991

    Article  CAS  Google Scholar 

  31. Cao R, Shi Q, Sun D, Hong M, Bi W, Zhao Y (2002) Syntheses and characterizations of copper(II) polymeric complexes constructed from 1,2,4,5-benzenetetracarboxylic acid. Inorg Chem 41:6161–6168

    Article  CAS  PubMed  Google Scholar 

  32. Hou Y, Wang S, Shen E, Wang E, Xiao D, Li Y, Xu L, Hu C (2004) A novel three-dimensional metal–organic network, Zn2(btec)(pipz)(H2O) (btec = 1,2,4,5-benzenetetracarboxylate, pipz = piperazine), with blue fluorescent emission. Inorg Chim Acta 357:3155–3161

    Article  CAS  Google Scholar 

  33. Haas I, Shanmugam S, Gedanken A (2006) Pulsed sonoelectrochemical synthesis of size-controlled copper nanoparticles stabilized by poly(N-vinylpyrrolidone. J Phys Chem B 110:16947–16952

    Article  CAS  PubMed  Google Scholar 

  34. Zhu J, Aruna ST, Koltypin Y, Gedanken A (2000) A novel method for the preparation of lead selenide: pulse sonoelectrochemical synthesis of lead selenide nanoparticles. Chem Mater 12:143–147

    Article  CAS  Google Scholar 

  35. Rodriguez L, Blanco MC, Lopez-Quintela MA (2000) Electrochemical synthesis of silver nanoparticles. J Phys Chem B 104:9683–9688

    Article  Google Scholar 

  36. Jiang LP, Wang AN, Zhao Y, Zhang JR, Zhu JJ (2004) A novel route for the preparation of monodisperse silver nanoparticles via a pulsed sonoelectrochemical technique. Inorg Chem Commun 7:506–509

    Article  CAS  Google Scholar 

  37. Mastai Y, Polsky R, Koltypin Y, Gedanken A, Hodes A (1999) Pulsed sonoelectrochemical synthesis of cadmium selenide nanoparticles. J Am Chem Soc 121:10047–10052

    Article  CAS  Google Scholar 

  38. Singh AK, Nakate UT (2014) Microwave synthesis, characterization, and photoluminescence properties of nanocrystalline zirconia. Sci World J 2014:1–7

    Google Scholar 

  39. AV M (2006) Photoluminescence properties of nanocrystalline ZnS on nanoporous silicon. J Mater Sci 41:1459–1464

    Article  Google Scholar 

  40. Lee EJH, Ribeiro C, Giraldi TR, Longo E, Leite ER (2004) Photoluminecence in quantum-confined SnO2 nanocrystals: evidence of free exciton decay. Appl Phys Lett 84:1745–1747

    Article  CAS  Google Scholar 

  41. Paulraj A, Natarajan P, Munnisamy K, Nagoor MK, Nattar KP, Abdulrazak B, Duraisamy J (2011) Photoluminescence efficiencies of nanocrystalline versus bulk Y2O3: Eu phosphor-revisited. J Am Ceram Soc 94:1627–1633

    Article  CAS  Google Scholar 

  42. He JH, TH W, Hsin CL, Li KM, Chen LJ, Chueh YL, Chou LJ, Wang ZL (2006) Beaklike SnO2 nanorods with strong photoluminescent and field-emission properties. Small 2:116–120

    Article  CAS  PubMed  Google Scholar 

  43. Huang J, Wang X, Jacobson AJ (2003) Hydrothermal synthesis and structures of the new open-framework uranyl silicates Rb4(UO2)2(Si8O20) (USH-2Rb), Rb2(UO2)(Si2O6)·H2O (USH-4Rb) and A2(UO2)(Si2O6)·0.5H2O (USH-5A; a = Rb, Cs). J Mater Chem 13:191–196

    Article  CAS  Google Scholar 

  44. Jiang P, Zhu W, Gan Z, Huang W, Li J, Zeng H, Shi J (2009) Electron transport properties of an ethanol-soluble AlQ3-based coordination polymer and its applications in OLED devices. J Mater Chem 19:4551–4556

    Article  CAS  Google Scholar 

  45. Gupta P, Ramrakhiani M (2009) Influence of the particle size on the optical properties of CdSe nanoparticles. Open Nanosci J 3:15–19

    Article  CAS  Google Scholar 

  46. Parker CA, Rees WT (1960) Correction of fluorescence spectra and measurement of fluorescence quantum efficiency. Analyst 85:587–600

    Article  CAS  Google Scholar 

  47. Zhua LJ, Wanga J, Renga TG, Li CY, Guoa DC, Guoa CC (2010) Effect of substituent groups of porphyrins on the electroluminescent properties of porphyrin-doped OLED devices. J Phys Org Chem 23:190–194

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Vice-President’s Office for Research Affairs of Shahid Beheshti University for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saied Saeed Hosseiny Davarani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahrjerdi, A., Davarani, S.S.H. Sonoelectrochemical Synthesis of Nano Zinc (II) Complexes with 9-Anthracenecarboxylic Acid: Effect of Current Density and Study of their Photophysical Properties. J Fluoresc 26, 2053–2061 (2016). https://doi.org/10.1007/s10895-016-1900-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1900-6

Keywords

Navigation