Skip to main content
Log in

Design of a Water Soluble Fluorescent 3-Hydroxy-4-Pyridinone Ligand Active at Physiological pH Values

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the present work we report the structure and the spectroscopic characterization of a new fluorescent 3-hydroxy-4-pyridinone ligand D-3,4-HPO. The synthesis of the compound was performed in two steps, which involve the reaction of the commercially available fluorophore dansyl chloride with a 3-hydroxy-4-pyridinone chelating unit and further deprotection. The new fluorescent chelator was characterized in the solid state by single-crystal X-ray diffraction and in solution by NMR, MS, absorption and fluorescence spectroscopies. The analysis of the variation of the absorption spectrum with pH allowed the determination of four pK a values (pK a1  = 3.50, pK a2  = 4.50, pK a3  = 9.60, pK a4  = 10.20) and establishment of the corresponding distribution diagram. The study of the fluorescence properties of the ligand show that in the pH range between 4 and 9 the fluorescence intensity is constant and has its maximum value thus allowing its further use at physiological pH values. The interaction of the ligand with copper(II) was accessed by fluorescence spectroscopy in MOPS buffer and the results show that the presence of copper(II) quenches the fluorescence of the ligand in ca 94 % at a ligand: metal ratio of 2:1. The latter result is consistent with the formation of a copper(II) complex with the bidentate ligand, as confirmed by the EPR spectroscopy.

New water soluble fluorescent ligand active at physiological pH values

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97(5):1515–1566

    Article  PubMed  Google Scholar 

  2. Saleem M, Lee KH (2015) Optical sensor: a promising strategy for environmental and biomedical monitoring of ionic species. RSC Adv 5(88):72150–72287

    Article  CAS  Google Scholar 

  3. Carter KP, Young AM, Palmer AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114(8):4564–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hamers D, Voorst Vader L, Borst JW, Goedhart J (2013) Development of FRET biosensors for mammalian and plant systems. Protoplasma 251(2):333–347

    Article  PubMed  Google Scholar 

  5. Chan J, Dodani SC, Chang CJ (2012) Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat Chem 4(12):973–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Domaille DW, Que EL, Chang CJ (2008) Synthetic fluorescent sensors for studying the cell biology of metals. Nat Chem Biol 4(3):168–175

    Article  CAS  PubMed  Google Scholar 

  7. Vinkenborg JL, Koay MS, Merkx M (2010) Fluorescent imaging of transition metal homeostasis using genetically encoded sensors. Curr Opin Chem Biol 14(2):231–237

    Article  CAS  PubMed  Google Scholar 

  8. Hessels AM, Merkx M (2015) Genetically-encoded FRET-based sensors for monitoring Zn2+ in living cells. Metallomics 7(2):258–266

    Article  CAS  PubMed  Google Scholar 

  9. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) New strategies for fluorescent probe Design in Medical Diagnostic Imaging. Chem Rev 110(5):2620–2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine—challenge and perspectives. Angew Chem Int Ed 48(5):872–897

    Article  CAS  Google Scholar 

  11. Lavis LD, Raines RT (2008) Bright ideas for chemical biology. ACS Chem Biol 3(3):142–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang Y, Zhao Q, Feng W, Li F (2013) Luminescent Chemodosimeters for Bioimaging. Chem Rev 113(1):192–270

    Article  CAS  PubMed  Google Scholar 

  13. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Johnsson N, Johnsson K (2007) Chemical tools for biomolecular imaging. ACS Chem Biol 2(1):31–38

    Article  CAS  PubMed  Google Scholar 

  15. Yuan L, Lin W, Zheng K, He L, Huang W (2013) Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem Soc Rev 42(2):622–661

    Article  CAS  PubMed  Google Scholar 

  16. Wang S, Li N, Pan W, Tang B (2012) Advances in functional fluorescent and luminescent probes for imaging intracellular small-molecule reactive species. TrAC Trends Anal Chem 39:3–37

    Article  Google Scholar 

  17. Doussineau T, Schulz A, Lapresta-Fernandez A, Moro A, Körsten S, Trupp S, Mohr GJ (2010) On the Design of Fluorescent Ratiometric Nanosensors. Chem Eur J 16(34):10290–10299

    Article  CAS  PubMed  Google Scholar 

  18. Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110(5):2641–2684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108(2):423–461

    Article  CAS  PubMed  Google Scholar 

  20. Louie A (2010) Multimodality imaging probes: design and challenges. Chem Rev 110(5):3146–3195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ren B, Gao F, Tong Z, Yan Y (1999) Solvent polarity scale on the fluorescence spectra of a dansyl monomer copolymerizable in aqueous media. Chem Phys Lett 307(1–2):55–61

    Article  CAS  Google Scholar 

  22. Reichardt C (2004) Solvent effects on the absorption spectra of organic compounds. In: Solvents and solvent effects in organic chemistry. Wiley-VCH Verlag GmbH & Co, KGaA, pp. 329–388

    Google Scholar 

  23. Lakowicz J (1999) Principles of Fluorescence Spectroscopy. Principles of Fluorescence Spectroscopy, 3rd edn. Kluwer Academic/Plenum Publishers, New York.

  24. Aramendia PF, Negri RM, Roman ES (1994) Temperature dependence of fluorescence and Photoisomerization in symmetric Carbocyanines. Influence of medium viscosity and molecular structure. J Phys Chem 98(12):3165–3173

    Article  CAS  Google Scholar 

  25. Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103(10):3899–4032

    Article  PubMed  Google Scholar 

  26. Santos-Pérez J, Crespo-Hernández CE, Reichardt C, Cabrera CR, Feliciano-Ramos I, Arroyo-Ramírez L, Meador MA (2011) Synthesis, optical characterization, and electrochemical properties of isomeric Tetraphenylbenzodifurans containing electron acceptor groups. The Journal of Physical Chemistry A 115(17):4157–4168

    Article  PubMed  Google Scholar 

  27. Metivier R, Leray I, Lebeau B, Valeur B (2005) A mesoporous silica functionalized by a covalently bound calixarene-based fluoroionophore for selective optical sensing of mercury(ii) in water. J Mater Chem 15(27–28):2965–2973

    Article  CAS  Google Scholar 

  28. Métivier R, Leray I, Valeur B (2004) Lead and mercury sensing by Calixarene-based Fluoroionophores bearing two or four Dansyl fluorophores. Chem Eur J 10(18):4480–4490

    Article  PubMed  Google Scholar 

  29. Metivier R, Leray I, Valeur B (2004) Photophysics of calixarenes bearing two or four dansyl fluorophores: charge, proton and energy transfers. Photochem Photobiol Sci 3(4):374–380

    Article  CAS  PubMed  Google Scholar 

  30. Prodi L, Montalti M, Zaccheroni N, Dallavalle F, Folesani G, Lanfranchi M, Corradini R, Pagliari S, Marchelli R (2001) Dansylated polyamines as fluorescent sensors for metal ions: Photophysical properties and stability of copper(II) complexes in solution. Helvetica Chimica Acta 84(3):690–706

    Article  CAS  Google Scholar 

  31. Prodi L, Bolletta F, Montalti M, Zaccheroni N (1999) Searching for new luminescent sensors: synthesis and Photophysical properties of a Tripodal ligand incorporating the Dansyl chromophore and of its metal complexes. Eur J Inorg Chem 1999(3):455–460

    Article  Google Scholar 

  32. Walkup GK, Imperiali B (1997) Fluorescent Chemosensors for divalent zinc based on zinc finger domains. Enhanced oxidative stability, metal binding affinity, and structural and functional characterization. J Am Chem Soc 119(15):3443–3450

    Article  CAS  Google Scholar 

  33. Chen C-F, Chen Q-Y (2004) A tetra-sulfonamide derivative bearing two dansyl groups designed as a new fluoride selective fluorescent chemosensor. Tetrahedron Lett 45(20):3957–3960

    Article  CAS  Google Scholar 

  34. Miao R, Zheng Q-Y, Chen C-F, Huang Z-T (2004) A C-linked peptidocalix[4]arene bearing four dansyl groups: a highly selective fluorescence chemosensor for fluoride ions. Tetrahedron Lett 45(25):4959–4962

    Article  CAS  Google Scholar 

  35. S-y L, He Y-b, G-y Q, Xu K-x, H-j Q (2005) Fluorescent sensors for amino acid anions based on calix[4]arenes bearing two dansyl groups. Tetrahedron Asymmetry 16(8):1527–1534

    Article  Google Scholar 

  36. Pagliari S, Corradini R, Galaverna G, Sforza S, Dossena A, Montalti M, Prodi L, Zaccheroni N, Marchelli R (2004) Enantioselective fluorescence sensing of amino acids by modified Cyclodextrins: role of the cavity and sensing mechanism. Chem Eur J 10(11):2749–2758

    Article  CAS  PubMed  Google Scholar 

  37. Dhir A, Bhalla V, Kumar M (2008) Ratiometric sensing of Hg2+ based on the calix[4]arene of partial cone conformation possessing a Dansyl moiety. Org Lett 10(21):4891–4894

    Article  CAS  PubMed  Google Scholar 

  38. Silva AMG, Leite A, Andrade M, Gameiro P, Brandão P, Felix V, de Castro B, Rangel M (2010) Microwave-assisted synthesis of 3-hydroxy-4-pyridinone/naphthalene conjugates. Structural characterization and selection of a fluorescent ion sensor. Tetrahedron 66(44):8544–8550

    Article  CAS  Google Scholar 

  39. Moniz T, Queirós C, Ferreira R, Leite A, Gameiro P, Silva AMG, Rangel M (2013) Design of a water soluble 1,8-naphthalimide/3-hydroxy-4-pyridinone conjugate: investigation of its spectroscopic properties at variable pH and in the presence of Fe3+, Cu2+ and Zn2 +. Dyes Pigments 98(2):201–211

    Article  CAS  Google Scholar 

  40. Queirós C, Leite A, Couto MGM, Moniz T, Cunha-Silva L, Gameiro P, Silva AMG, Rangel M (2014) Tuning the limits of pH interference of a rhodamine ion sensor by introducing catechol and 3-hydroxy-4-pyridinone chelating units. Dyes Pigments 110:193–202

    Article  Google Scholar 

  41. Liu ZD, Kayyali R, Hider RC, Porter JB, Theobald AE (2002) Design, synthesis, and evaluation of novel 2-substituted 3-Hydroxypyridin-4-ones: Structure − Activity investigation of Metalloenzyme inhibition by iron chelators. J Med Chem 45(3):631–639

    Article  CAS  PubMed  Google Scholar 

  42. Kottke T, Stalke D (1993) Crystal handling at low temperatures. J Appl Crystallogr 26(4):615–619

    Article  Google Scholar 

  43. APEX2 (2012) Data collection software version 20124. Bruker AXS, Delft, The Netherlands

    Google Scholar 

  44. Cryopad (2006) Remote monitoring and control, version 1451. Oxford Cryosystems, Oxford, United Kingdom

    Google Scholar 

  45. SAINT+ (1997-2012) Data integration engine v 827b:Bruker AXS. Madison, Wisconsin, USA

  46. Sheldrick GM (2012) SADABS 2012/1. Bruker AXS, Madison, Wisconsin, USA, Bruker AXS Area Detector Scaling and Absorption Correction Program

    Google Scholar 

  47. Sheldrick G (2008) A short history of SHELX. Acta Crystallographica Section A 64(1):112–122

    CAS  Google Scholar 

  48. Sheldrick GM (2014) SHELXT v. 2014/3,Program for Crystal Structure Solution. University of Göttingen

  49. Williams ATR, Winfield SA, Miller JN (1983) Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst 108(1290):1067–1071

    Article  CAS  Google Scholar 

  50. Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Educ 76(9):1260

    Article  CAS  Google Scholar 

  51. Brouwer Albert M (2011) Standards for photoluminescence quantum yield measurements in solution (IUPAC technical report). Pure Appl Chem 83(12):2213

    Google Scholar 

  52. Gans P, Sabatini A, Vacca A (1996) Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43(10):1739–1753

    Article  CAS  PubMed  Google Scholar 

  53. Albert A, Sergeant E (1971) The determination of ionization constants, 2nd edn. Chapman& Hall, London

    Google Scholar 

  54. Alderighi L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A (1999) Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord Chem Rev 184(1):311–318

    Article  CAS  Google Scholar 

  55. Razzaq T, Kappe CO (2008) On the energy efficiency of microwave-assisted organic reactions. ChemSusChem 1(1–2):123–132

    Article  CAS  PubMed  Google Scholar 

  56. Platt JR (1949) Classification of spectra of Cata-condensed hydrocarbons. J Chem Phys 17(5):484–495

    Article  CAS  Google Scholar 

  57. Li Y-H, Chan L-M, Tyer L, Moody RT, Himel CM, Hercules DM (1975) Solvent effects on the fluorescence of 1-(dimethylamino)-5-naphthalenesulfonic acid and related compounds. J Am Chem Soc 97(11):3118–3126

    Article  CAS  Google Scholar 

  58. Drummen G (2012) Fluorescent probes and fluorescence (microscopy) techniques — illuminating biological and biomedical research. Molecules 17(12):14067

    Article  CAS  PubMed  Google Scholar 

  59. Ghiggino KP, Lee AG, Meech SR, O'Connor DV, Phillips D (1981) Time-resolved emission spectroscopy of the dansyl fluorescence probe. Biochemistry 20(19):5381–5389

    Article  CAS  PubMed  Google Scholar 

  60. Leite A, Silva AMG, Nunes A, Andrade M, Sousa C, Cunha-Silva L, Gameiro P, de Castro B, Rangel M (2011) Novel tetradentate chelators derived from 3-hydroxy-4-pyridinone units: synthesis, characterization and aqueous solution properties. Tetrahedron 67(22):4009–4016

    Article  CAS  Google Scholar 

  61. Lowe MP, Parker D (2001) pH switched sensitisation of europium(III) by a dansyl group. Inorg Chim Acta 317(1–2):163–173

    Article  CAS  Google Scholar 

  62. Burgess J, Rangel M (2008) Hydroxypyranones, hydroxypyridinones, and their complexes. In: Advances in inorganic chemistry, vol volume 60. Academic Press, United Kingdom, First Edition edn. Elsevier, pp. 167–243

    Chapter  Google Scholar 

  63. Rangel M, Leite A, Silva AMN, Moniz T, Nunes A, Amorim MJ, Queiros C, Cunha-Silva L, Gameiro P, Burgess J (2014) Distinctive EPR signals provide an understanding of the affinity of bis-(3-hydroxy-4-pyridinonato) copper(ii) complexes for hydrophobic environments. Dalton Trans 43(25):9722–9731

    Article  CAS  PubMed  Google Scholar 

  64. Calvo R, Passeggi MC, Isaacson RA, Okamura MY, Feher G (1990) Electron paramagnetic resonance investigation of photosynthetic reaction centers from Rhodobacter sphaeroides R-26 in which Fe2+ was replaced by Cu2+. Determination of hyperfine interactions and exchange and dipole-dipole interactions between Cu2+ and QA. Biophys J 58(1):149–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chow C, Chang K, Willett RD (1973) Electron spin resonance spectra and covalent bonding in the square-planar CuCl42− and CuBr42− ions. J Chem Phys 59(5):2629–2640

    Article  CAS  Google Scholar 

  66. Maki AH, McGarvey BR (1958) Electron spin resonance in transition metal chelates. I. Copper (II) bis-Acetylacetonate. J Chem Phys 29(1):31–34

    Article  CAS  Google Scholar 

  67. Solomon EI, Baldwin MJ, Lowery MD (1992) Electronic structures of active sites in copper proteins: contributions to reactivity. Chem Rev 92(4):521–542

    Article  CAS  Google Scholar 

  68. Antosik S, Brown NMD, McConnell AA, Porte AL (1969) The effects of axial interactions on electron paramagnetic resonance spectra of copper(II) chelates: weak complexes of copper(II) chelates and chloroform. Journal of the Chemical Society A: Inorganic, Physical, Theoretical (0):545–550

Download references

Acknowledgments

This work received financial support from the European Union (FEDER funds through COMPETE) and National Funds (FCT, Fundação para a Ciência e Tecnologia), under the Partnership Agreement PT2020 through projects NORTE-07-0162-FEDER-000048 UID/QUI/50006/2013 (LAQV/REQUIMTE), and UID/Multi/04378/2013 (UCIBIO/REQUIMTE). The NMR spectrometers are part of the National NMR Network and were purchased within the framework of the National Program for Scientific Re-equipment, contract REDE/1517/RMN/2005, with funds from POCI 2010 (FEDER) and FCT. The authors are greatly indebted to all financing sources. A.L. also thank FCT her grant (SFRH/BPD/85793/2012).

We also thank Dr. Ribeiro, David S. M. and Dr. Santos, Joao L. M. from LAQV, REQUIMTE, FFUP for measurements of absolute photoluminescence quantum yields.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreia Leite.

Electronic supplementary material

ESM 1

(DOCX 1005 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leite, A., Silva, A.M.G., Coutinho, C. et al. Design of a Water Soluble Fluorescent 3-Hydroxy-4-Pyridinone Ligand Active at Physiological pH Values. J Fluoresc 26, 1773–1785 (2016). https://doi.org/10.1007/s10895-016-1869-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1869-1

Keywords

Navigation