Skip to main content
Log in

A Fluorescence-Labeled Heptapeptide, (FITC)KP6, as an Efficient Probe for the Specific Detection of Oxidized and Minimally Modified Low-Density Lipoprotein

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Two oxidized forms of low-density lipoprotein (LDL), oxidized LDL (ox-LDL) and minimally modified LDL (MM-LDL), are believed to play a major role in the pathogenesis of atherosclerosis. Recently, we reported that a heptapeptide (Lys-Trp-Tyr-Lys-Asp-Gly-Asp, KP6) coupled through the ε-amino group of N-terminus Lys to fluorescein isothiocyanate, (FITC)KP6, bound to ox-LDL but not to LDL. In the present study, we investigated whether (FITC)KP6 could be used as a fluorescent probe for the specific detection of MM-LDL and ox-LDL. Results from polyacrylamide gel electrophoresis and surface plasmon resonance proved that (FITC)KP6 could efficiently bind to MM-LDL as well as ox-LDL in a dose-dependent manner and with high affinity (K D = 3.16 and 3.54 ng/mL protein for MM-LDL and ox-LDL, respectively). (FITC) KP6 bound to lysophosphatidylcholine and oxidized phosphatidylcholine, both present abundantly in ox-LDL and MM-LDL, respectively. In vitro, (FITC)KP6 was detected on the surface and/or in the cytosol of human THP-1-derived macrophages incubated with ox-LDL and MM-LDL, but not LDL. These results suggest that (FITC)KP6 could be an efficient fluorescent probe for the specific detection of ox-LDL and MM-LDL and can therefore contribute to the identification, diagnosis, prevention, and treatment of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  PubMed  Google Scholar 

  2. Caplan BA, Schwartz CJ (1973) Increased endothelial cell turnover in areas of in vivo Evans blue uptake in the pig aorta. Atherosclerosis 17:60–73

    Article  Google Scholar 

  3. Crisby M, Kallin B, Thyberg J, Zhivotovsky B, Orrenius S, Kostulas V, Nilsson J (1997) Cell death in human atherosclerotic plaques involves both oncosis and apoptosis. Atherosclerosis 130:17–27

    Article  CAS  PubMed  Google Scholar 

  4. Sternberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol: modification of low-density lipoprotein that increases its atherogenicity. N Engl J Med 320:915–924

    Article  Google Scholar 

  5. Witztum JL (1993) Role of oxidized low-density lipoprotein in atherogenesis. Br Heart J 69:12–18

    Article  Google Scholar 

  6. Rosenfeld ME (1991) Oxidized LDL affects multiple atherogenic cellular responses. Circulation 83:2137–2140

    Article  CAS  PubMed  Google Scholar 

  7. Nishi K, Itabe H, Uno M, Kitazato KT, Horiguchi H, Shinno K, Nagahiro S (2002) Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol 22:1649–1654

    Article  CAS  PubMed  Google Scholar 

  8. Aikawa M, Sugiyama S, Hill C, Voglic S, Rabkin E, Fukumoto Y, Schoen F, Witztum J, Libby P (2002) Lipid lowering reduces oxidative stress and endothelial cell activation in rabbit atheroma. Circulation 160:1390–1396

    Article  Google Scholar 

  9. Sigala F, Kotsinas A, Savari P, Filis K, Markantonis S, Iliodromitis EK, Gorgoulis VG, Andreadou I (2010) Oxidized LDL in human carotid plaques is related to symptomatic carotid disease and lesion instability. J Vasc Surg 52:704–713

    Article  PubMed  Google Scholar 

  10. Sevanian A, Bittolo-Bon G, Cazzolato G, Hodis H, Hwang J, Zamburlini A, Maiorino M, Uysini F (1997) LDL is a lipid hydroperoxide-enriched circulating lipoprotein. J Lipid Res 38:419–428

    CAS  PubMed  Google Scholar 

  11. Itabe H, Mori M, Fujimoto Y, Higashi Y, Takano T (2003) Minimally modified LDL is an oxidized LDL enriched with oxidized phosphatidylcholines. J Biochem 134:459–465

    Article  CAS  PubMed  Google Scholar 

  12. Markakis KP, Koropouli MK, Grammenou-Savvoglou S, van Winden EC, Dimitriou AA, Demopoulos CA, Tselepis AD, Kotsifaki EE (2010) Implication of lipoprotein associated phospholipase A2 activity in oxLDL uptake by macrophages. J Lipid Res 51:2191–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hodis HN, Kramsch DM, Avogaro P, Bittolo-Bon G, Cazzolato G, Hwang J, Peterson H, Sevanian A (1994) Biochemical and cytotoxic characteristics of an in vivo circulating oxizied low density lipoprotein (LDL-). J Lipid Res 35:669–677

    CAS  PubMed  Google Scholar 

  14. Cazzolato G, Avogaro P, Bittolo-Bon G (1991) Characterization of a more electronegatively charged LDL subfraction by ion exchange HPLC. Free Radic Biol Med 11:247–253

    Article  CAS  PubMed  Google Scholar 

  15. Itabe H, Obama T, Kato R (2011) The dynamics of oxidized LDL during atherogenesis. J Lipids 2011:418313

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yokota K, Shimada H, Kamaguchi A, Sakaguchi O (1977) Studies on the toxin of Aspergillus fumigatus VII. Purification and some properties of hemolytic toxin (Asp-hemolysin) from culture filtrates and mycelia. Microbiol Immunol 21:11–22

    Article  CAS  PubMed  Google Scholar 

  17. Ebina K, Sakagami H, Yokota K, Kondo H (1994) Cloning and nucleotide sequence of cDNA encoding Asp-hemolysin from Aspergillus fumigatus. Biochim Biophys Acta 1219:148–150

    Article  CAS  PubMed  Google Scholar 

  18. Fukuchi Y, Kudo Y, Kumagai T, Ebina K, Yokota K (1998) Oxidized low density lipoprotein inhibits the hemolytic activity of Asp-hemolysin from Aspergillus fumigatus. FEMS Microbiol Lett 167:275–280

    Article  CAS  PubMed  Google Scholar 

  19. Kudo Y, Kumagai T, Fukuchi Y, Ebina K, Yokota K (1999) Binding of Asp-hemolysin from Aspergillus fumigatus to oxidized low density lipoprotein. Biol Pharm Bull 22:549–550

    Article  CAS  PubMed  Google Scholar 

  20. Kudo Y, Fukuchi Y, Kumagai T, Ebina K, Yokota K (2001) Oxidized low-density lipoprotein-binding specificity of Asp-hemolysin from Aspergillus fumigatus. Biochim Biophys Acta 1568:183–188

    Article  CAS  PubMed  Google Scholar 

  21. Kumagai T, Ogawa N, Tsutsumi H, Ebina K, Yokota K (2005) A synthetic peptide (P-21) derived from Asp-hemolysin inhibits the induction of macrophage proliferation by oxidized low-density lipoprotein. Biol Pharm Bull 28:1381–1384

    Article  CAS  PubMed  Google Scholar 

  22. Tsutsumi H, Kumagai T, Naitoo S, Ebina K, Yokota K (2006) Synthetic peptide (P-21) derived from Asp-hemolysin inhibits the induction of apoptosis on HUVECs by lysophosphatidylcholine. Biol Pharm Bull 29:907–910

    Article  CAS  PubMed  Google Scholar 

  23. Kudo Y, Ootani T, Kumagai T, Fukuchi Y, Ebina K, Yokota K (2002) A novel oxidized low-density lipoprotein-binding protein, Asp-hemolysin, recognizes lysophosphatidylcholine. Biol Pharm Bull 25:787–790

    Article  CAS  PubMed  Google Scholar 

  24. Kumagai T, Tsutsumi H, Ogawa N, Naito S, Ebina K, Yokota K, Nagata K (2006) Oxidized low-density lipoprotein-binding specificity of the Asp-hemolysin-related synthetic peptides from Aspergillus fumigatus. Biol Pharm Bull 29:2181–2186

    Article  CAS  PubMed  Google Scholar 

  25. Sato A, Aoki J, Ebina K (2012) Synthetic biotinylated peptide compound, BP21, specifically recognizes lysophosphatidylcholine micelles. Chem Biol Drug Des 80:417–425

    Article  CAS  PubMed  Google Scholar 

  26. Sato A, Yamanaka H, Oe K, Yamazaki Y, Ebina K (2014) Novel fluorescently labeled peptide compounds for detection of oxidized low-density lipoprotein at high specificity. Chem Biol Drug Des 84:443–449

    Article  CAS  PubMed  Google Scholar 

  27. Sato A, Yamanaka H, Oe K, Yokoyama I, Yamazaki Y, Ebina K (2015) Highly stable, fluorescence-labeled heptapeptides substituted with a D-amino acid for the specific detection of oxidized low-density lipoprotein in plasma. Chem Biol Drug Des 85:348–355

    Article  CAS  PubMed  Google Scholar 

  28. Havel RJ, Eder HA, Bragdon JH (1955) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 34:1345–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  30. Kovacs E, Liliom K (2008) Sphingosylphosphorylcholine as a novel calmodulin inhibitor. Biochem J 410:427–437

    Article  CAS  PubMed  Google Scholar 

  31. Esposti MD, Cristea IM, Gaskell SJ, Nakao Y, Dive C (2003) Proapoptopic Bid binds to monolysocardiolipin, a new molecular connection between mitochondrial membranes and cell death. Cell Death Differ 10:1300–1309

    Article  CAS  PubMed  Google Scholar 

  32. Manara A, Lindsay J, Marchioretto M, Astegno A, Gilmore AP, Esposti MD, Crimi M (2009) Bid binding to negatively charged phospholipids may not be required for its pro-apoptotic activity in vivo. Biochim Biophys Acta 1791:997–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shashkin P, Draqulev B, Ley K (2005) Macrophage differentiation to foam cells. Curr Pharm Des 11:3061–3072

    Article  CAS  PubMed  Google Scholar 

  34. Glass CK, Witztum JL (2001) Atherosclerosis. The road ahead. Cell 23:503–516

    Article  Google Scholar 

  35. Itabe H (1998) Oxidized phospholipids as a new landmark in atherosclerosis. Prog Lipid Res 37:181–207

    Article  CAS  PubMed  Google Scholar 

  36. Jougasaki M, Kugiyama K, Saito Y, Nakao K, Imura H, Yasue H (1992) Suppression of endothelin-1 secretion by lysophosphatidylcholine in oxidized low-density lipoprotein in cultured vascular endothelial cells. Circ Res 71:614–619

    Article  CAS  PubMed  Google Scholar 

  37. Sugiyama S, Kugiyama K, Ohgushi M, Fujimoto K, Yasue H (1992) Lysophpsphatidylcholine in oxidized low-density lipoprotein increases endothelial susceptibility to polymorphonuclear leukocyte-induced endothelial dysfunction in porcine coronary arteries. role of protein kinase C. Circ Res 74:565–575

    Article  Google Scholar 

  38. Luo Z, Zhang S (2012) Designer nanomaterials using chiral self-assembling peptide systems and their emerging benefit for society. Chem Soc Rev 41:4736–4754

    Article  CAS  PubMed  Google Scholar 

  39. Itabe H, Takeshima H, Iwasaki H, Kimura J, Yoshida Y, Imanaka T, Takano T (1994) A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. Complex formation of oxidized phosphatidylcholine and polypeptides. J Biol Chem 269:15274–15279

    CAS  PubMed  Google Scholar 

  40. Itabe H, Yamamoto H, Imanaka T, Shimamura K, Uchiyama H, Kimura J, Sanaka T, Hata Y, Takano T (1996) Sensitive detection of oxidatively modified low density lipoprotein using a monoclonal antibody. J Lipid Res 37:45–53

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Adaptable and Seamless Technology Transfer Program through Target-driven R&D from the Japan Science and Technology Agency (to A.S.), and the Intelligent Cosmos Scientific Foundation (to A.S.). We thank Ms. Hiromi Yoshida (Center of Research Instruments, Institute of Development, Aging and Cancer, Tohoku University) for SPR measurements. We thank Allisere Co. Ltd. (Tokyo, Japan) for forming tissue slice by microtome. We thank Mr. Hikaru Yamanaka, Mr. Keitaro Oe, and Ms. Izumi Yokoyama (Faculty of Pharmacy, Iwaki Meisei University) for experimental help. We thank Editage by Cactus Communications Inc. (Tokyo, Japan) for providing assistance with the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Sato.

Ethics declarations

Conflict of Interest

The authors declare that there exists no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, A., Ueda, C., Kimura, R. et al. A Fluorescence-Labeled Heptapeptide, (FITC)KP6, as an Efficient Probe for the Specific Detection of Oxidized and Minimally Modified Low-Density Lipoprotein. J Fluoresc 26, 1141–1150 (2016). https://doi.org/10.1007/s10895-016-1808-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1808-1

Keywords

Navigation