Skip to main content
Log in

Spectroscopic Study of CpG Alternating DNA-Methylene Blue Interaction for Methylation Detection

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Recognition of methylated DNA sites would be useful strategy due to the important roles of methylation in disease occurrence and developmental processes. The interaction of CpG rich methylated and unmethylated DNA hybrid with methylene blue (MB) as an optical probe has been investigated by absorption, emission, circular dichorism and fluorescence anisotropy analysis. Titration of MB with both sequences caused a hypsochromism and decreased the absorption of MB that indicating an intercalative mode of interaction. The experimental results revealed that MB as the optical indicator could distinguish between the methylated and unmethylated DNA sequences. Under optimum conditions, upon the addition of methylated dsDNA, the fluorescence intensity increased in linear range from 1.0 × 10−9 to 1.0 × 10−6 M with detection limit of 7.2 × 10−10 M and on the other hand, the intensity of MB showed no change with addition of unmethylated dsDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chodavarapu RK, Feng SH, Bernatavichute YV, Chen PY, Stroud H, Yu YC, Hetzel JA, Kuo F, Kim J, Cokus SJ, Casero D, Bernal M, Huijser P, Clark AT, Krämer U, Merchant SS, Zhang XY, Jacobsen SE, Pellegrini M (2010) Relationship between nucleosome positioning and DNA methylation. Nature 466:388–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Frigola J, Song J, Stirzaker C, Hinshelwood RA, Peinado MA, Clark SJ (2006) Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat Genet 38:540–549

    Article  CAS  PubMed  Google Scholar 

  3. Holliday R (4824) The inheritance of epigenetic defects. Science 238: 163–170

  4. Taleat Z, Mathwig K, Sudhölter EJR, Rassaei L (2014) Detection strategies for methylated and hypermethylated DNA. TrAC Trends Anal Chem 66:80–89

    Article  Google Scholar 

  5. Clark SJ, Harrison J, Paul CL, Frommer M (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Clark SJ, Statham A, Stirzaker C, Molloy PL, Frommer M (2006) DNA methylation: Bisulphite modification and analysis. Nat Protoc 1:2353–2364

    Article  CAS  PubMed  Google Scholar 

  7. Dadmehr M, Hosseini M, Hosseinkhani S, Ganjali MR, Khoobi M, Behzadi H, Hamedani M, Sheikhnejad R (2014) DNA methylation detection by a novel fluorimetric nanobiosensor for early cancer diagnosis. Biosens Bioelectron 60:35–44

    Article  CAS  PubMed  Google Scholar 

  8. Chun C, Li B (2014) Chemiluminescence resonance energy transfer biosensing platform for site-specific determination of DNA methylation and assay of DNA Methyltransferase activity using exonuclease III-assisted target recycling amplification. Biosen Bioelectron 54:48–53

    Article  Google Scholar 

  9. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler MMA, Hirst M, Wang T, Costello JF (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aberg KAD, McClay JL, Nerella S, Xie LY, Clark SL, Hudson AD, Bukszar J, Adkins D, Consortium SS, Hultman CM, Sullivan PF, Magnusson PK, van den Oord EJ (2012) MBD-seq as a cost-effective approach for methylome-wide association studies: demonstration in 1500 case-control samples. Epigenomics 4:605–621

    Article  Google Scholar 

  11. Bareyt S, Carell T (2008) Selective detection of 5-Methylcytosine sites in DNA. Angew Chem (International ed. in English) 47:181–184

    Article  CAS  Google Scholar 

  12. Usacheva MN, Teichert MC, Biel MA, Photochem J (2003) The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria. J Photochem Photobiol B 71:87–98

    Article  CAS  PubMed  Google Scholar 

  13. Li WY, Xu JG, Guo XQ, Zhu QZ, Zhao YB (1997) Application of Vitamin K3 as a Photochemical fluorescence probe in the determination of nucleic Acids. Anal Lett 30:245–257

    Article  Google Scholar 

  14. Tong CL, Hu Z, Wu JM (2010) Interaction between methylene blue and calf thymus deoxyribonucleic acid by spectroscopic technologies. J Fluoresc 20:261–267

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Z, Wang X, Yang YWX (2010) Distinction of single base mismatches in duplex DNA using methylene blue as optical indicator. Analyst 135:2960–2964

    Article  CAS  PubMed  Google Scholar 

  16. Rehman SU, Sarwar T, Husain MA, Mubarak Ishqi H, Tabish M (2015) Studying non-covalent drug-DNA interactions. Biochem Biophys 576:49–60

    Article  Google Scholar 

  17. Zhang LZ, Tang GQ (2004) The binding properties of photosensitizer methylene blue to herring sperm DNA: a spectroscopic study. J Photochem Photobiol B Biol 74:119–125

    Article  CAS  Google Scholar 

  18. Long EC, Barton JK (1990) On demonstrating DNA intercalation. Acc Chem Res 23:271–273

    Article  CAS  Google Scholar 

  19. Cantor C, Schimmel PR, Biophysical Chemistry, Freeman WH, San Francisco, part 2, chapter 11, (1980)

    Google Scholar 

  20. Appleton TG, Hall JR (1970) Multispectroscopic DNA interaction studies of a water-soluble nickel (II) complex containing different dinitrogen aromatic ligands. J Inorg Chem 9:1807–1813

    Article  CAS  Google Scholar 

  21. Gonzalez-Ruiz V, Olives AI, Martin MA, Ribelles P, Ramos MT, Menendez JC (2011) An overview of analytical techniques employed to evidence drug–DNA interactions. applications to the design of genosensors. In: Komorowska MA, Olsztynska-Janus S (eds) Biomedical Engineering. Trends, Research and Technologies. In Tech, pp. 65–90

    Google Scholar 

  22. Prunkl C, Pichlmaier M, Winter R, Kharlanov V, Rettig W, Wagenknecht HA (2010) Optical, Redox, and DNA-Binding properties of Phenanthridinium chromophores: Elucidating the role of the Phenyl Substituent for fluorescence enhancement of ethidium in the presence of DNA. Chem Eur J 16:3392–3402

    Article  CAS  PubMed  Google Scholar 

  23. Li WY, Xu JG, Guo XQ, Zhu QZ, Zhao YB (1997) Study on the interaction between rivanol and DNA and its application to DNA assay. Spectrochim Acta A 53:781–787

    Article  Google Scholar 

  24. Dadmehr M, Hosseini M, Hosseinkhani S, Ganjali MR, Sheikhnejad R (2015) Label free colorimetric and fluorimetric direct detection of methylated DNA based on silver nanoclusters for cancer early diagnosis. Biosens Bioelectron 73:108–113

    Article  CAS  PubMed  Google Scholar 

  25. Kumar CV, Asuncion EH (1993) DNA binding studies and site selective fluorescence sensitization of an anthryl probe. J Am Chem Soc 115:8547–8553

    Article  CAS  Google Scholar 

  26. Netzel TL, Nafisi K, Zhao M, Lenhard JR, Yohnson I (1995) Base-Content Dependence of emission Enhancements, Quantum Yields, and Lifetimes for Cyanine dyes bound to Double-Strand DNA: Photophysical properties of Monomeric and Bichromomphoric DNA Stains. J Phys Chem 99:17936–17947

    Article  CAS  Google Scholar 

  27. Nygren J, Svanvik N, Kubista M (1998) The interactions between the fluorescent dye thiazole orange and DNA. Biopolymers 46:39–51

    Article  CAS  PubMed  Google Scholar 

  28. Rohs R, Sklenar H, Lavery R, Roder B (2000) Methylene blue binding to DNA with alternating GC Base sequence: A modeling study. J Am Chem Soc 122:2860–2866

    Article  CAS  Google Scholar 

  29. Ivanov VI, Minchenkova LE, Schyolkina AK, Polytayer AI (1973) Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers 12:89–110

    Article  CAS  PubMed  Google Scholar 

  30. Shahabadi N, Hadidi S (2012) Spectroscopic studies on the interaction of calf thymus DNA with the drug levetiracetam. Spectrochim Acta A 96:278–283

    Article  CAS  Google Scholar 

  31. Poklar N, Pilch DS, Lippard SJ, Redding EA, Dunham SH, Breslauer KJ (1996) Peptide signaling during terminal differentiation of Dictyostelium. Proc Natl Acad Sci U S A 93:7607–7611

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the research Council of University of Tehran for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M., Khaki, F., Dadmehr, M. et al. Spectroscopic Study of CpG Alternating DNA-Methylene Blue Interaction for Methylation Detection. J Fluoresc 26, 1123–1129 (2016). https://doi.org/10.1007/s10895-016-1804-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1804-5

Keywords

Navigation