Skip to main content
Log in

A New Fluorescent Sensor Based on Bisindolizine Derivative

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A fluorescent sensor based on 1,2,1ʹ,2ʹ- Tetra(methoxycarbonyl)- 3,3ʹ- bis(p-methylbenzoyl)- 7,7ʹ-bisindolizine (MBI) showing excellent selectivity towards Fe3+ ions was developed. Under optimized experimental conditions, the fluorescence intensity of 1,2,1ʹ,2ʹ- Tetramethoxycarbonyl- 3,3ʹ- bis(p-methylbenzoyl)- 7,7ʹ-bisindolizine was quenched linearly by Fe3+ ions in the range of 2.00 × 10−2 to 4.76 × 10−3 M. The limit of detection was found to be 3.17 × 10−3 M. The mechanism for quenching was investigated. The developed sensor was applied for the determination of Fe3+ in pharmaceutical samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. James PS, Raoul K (2005) Alexa Fluor 488 as an iron sensing molecule and its application in PEBBLE nanosensors. Analyst 130:528–533

    Article  Google Scholar 

  2. Lizhu Z, Jingyum W, Jiangli F, Kexing G, Xiaojun P (2011) A highly selective fluorescent chemosensor for bioimaging of Fe3+. Bioorg. Med Chem Lett 21:5413–5416

    Article  Google Scholar 

  3. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549

    Article  CAS  PubMed  Google Scholar 

  4. Annie HJ, Chang HC, Su WT (2012) DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions. Anal Chem 84:3246–3253

    Article  Google Scholar 

  5. Wang B, Hai J, Liu ZC, Wang Q, Yang ZY, Sun SH (2010) Selective detection of iron (III) by rhodamine-modified Fe3O4 nanoparticles. Angew Chem Int Ed 49:4576–4579

    Article  CAS  Google Scholar 

  6. Ajlec R, Stupar J (1989) Determination of iron species in wine by ion-exchange chromatography–flame atomic absorption spectrometry. Analyst 114:137–142

    Article  CAS  PubMed  Google Scholar 

  7. Favaron R, Aleixo LM (2000) Development of a voltammetric method for the determination of iron (III) in Zn-Fe alloy galvanic baths. Fresenius J Anal Chem 368:611–615

    Article  CAS  PubMed  Google Scholar 

  8. Van den Berg CMG (2006) Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene. Anal Chem 78:156–163

    Article  PubMed  Google Scholar 

  9. Luan F, Burgos WD (2012) Sequential extraction method for determination of Fe (II/III) and U (IV/VI) in suspensions of iron-bearing phyllosilicates and uranium. Environ Sci Technol 46:11995–12002

    Article  CAS  PubMed  Google Scholar 

  10. Tarafder PK, Thakur R (2005) Surfactant-mediated extraction of iron and its spectrophotometric determination in rocks, minerals, soils, stream sediments and water samples. Microchem J 80:39–43

    Article  CAS  Google Scholar 

  11. Abdel Azeem SM, Bader NR, Kuss HM, El-Shahat MF (2013) Determination of total iron in food samples after flow injection preconcentration on polyurethane foam functionalized with N,N-bis (salicylidene)-1,3-propanediamine. Food Chem 138:1641–1647

    Article  CAS  PubMed  Google Scholar 

  12. Bowie AR, Achterberg EP, Sedwick P, Ussher S, Worsfold PJ (2002) Real-time monitoring of picomolar concentrations of iron (II) in marine waters using automated flow injection-chemiluminescence instrumentation. Environ Sci Technol 36:4600–4607

    Article  CAS  PubMed  Google Scholar 

  13. Croot PL, Laan P (2002) Metal ions in biological systems. Anal Chim Acta 466:261–273

    Article  CAS  Google Scholar 

  14. Rodrigues SSM, Lima AS, Teixeira LSG, Korn MDA, Santos JLM (2014) Determination of iron in biodiesel based on fluorescence quenching of CdTe quantum dots. Fuel 117:520–527

    Article  CAS  Google Scholar 

  15. Du YY, Chen M, Zhang YX, Luo F, He CY, Li MJ, Chen X (2013) Determination of iron (III) based on the fluorescence quenching of rhodamine B derivative. Talanta 106:261–265

    Article  CAS  PubMed  Google Scholar 

  16. Dwivedi AK, Saikia G, Iyer PK (2011) Aqueous polyfluorene probe for the detection and estimation of Fe3+ and inorganic phosphate in blood serum. J Mater Chem 21:2502–2507

    Article  CAS  Google Scholar 

  17. Chen X, Pradhan T, Wang F, Kim JS, Yoon J (2012) Fluorescent chemosensors based on spiroring-opening of xathenes and related derivatives. Chem Rev 112:1910–1956

    Article  CAS  PubMed  Google Scholar 

  18. Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40:5361–5388

    Article  CAS  PubMed  Google Scholar 

  19. Yang Y, Zhao Q, Feng W, Li F (2013) Luminescent chemodosimeters for bioimaging. Chem Rev 113:192–270

    Article  CAS  PubMed  Google Scholar 

  20. Divya T, Laina L, Leena R, Soumya TC, Girish KG (2013) Quantum dots based fluorescence sensorfor the selective determination of nimesulide. J Fluoresc 23:473–478

    Article  Google Scholar 

  21. Malonne H, Hanuise J, Fontaine J (1998) Topical anti-inflammatory activity of new 2-(1-indolizinyl) propionic acid derivatives in mice. Pharm Pharmacol Commun 4:241–243

    CAS  Google Scholar 

  22. Medda S, Jaisankar P, Manna RK, Pal B, Giri VS, Basu MK (2003) Phospholipid microspheres: a novel delivery mode for targeting antileishmanial agent in experimental leishmaniasis. J Drug Target 11:123–128

    Article  CAS  PubMed  Google Scholar 

  23. Campagna F, Carotti A, Casini G, Macripo M (1990) Synthesis of new heterocyclic ring systems: indeno [2,1-b] benzo [g] indolizine and indeno [1′,2′:5,4]pyrrolo[2,1-a]phthalazine. Heterocycles 31:97–107

    Article  CAS  Google Scholar 

  24. Olden K, Breton P, Grzegorzevski K, Yasuda Y, Gause BL, Creaipe OA, Newton SA, White SL (1991) The potential importance of swainsonine in therapy for cancers and immunology. Pharmacol Ther 50:285–290

    Article  CAS  PubMed  Google Scholar 

  25. Saeva FD, Luss HR (1988) Novel synthesis of the 2, 3-benzindolizine ring system. Mechanism of formation, redox, electronic absorption and fluorescence behaviour. J Org Chem. 53:1804–1806

    Article  CAS  Google Scholar 

  26. Delattre F, Woisel P, Surpateanu G, Cazier F, Blach P (2005) 1-(4-nitrophenoxycarbonyl)-7-pyridin-4-yl indolizine: a new versatile fluorescent building block. Application to the Synthesis of a Series of Fluorescent β-Cyclodextrins. Tetrahedron 61:3939–3945

    Article  CAS  Google Scholar 

  27. Gopal MS, Anitha I (2014) Aqueous phase microwave synthesis of some bisindolizines. Int J Chem Stud 2:35–38

    Google Scholar 

  28. Wen G, Zhu M, Wang Z, Meng X, Hu H, Guo Q (2006) Fluorescence enhancement of polyamine derivatives of 1,8-naphthalimide with transition metal ions. Chin J Chem Phys 19:506–510

    Article  CAS  Google Scholar 

  29. Chen Y, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74:5132–5138

    Article  CAS  PubMed  Google Scholar 

  30. Cai ZX, H Y, Y Z, XP Y (2006) Preparation, characterization and evaluation of water-soluble L-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg(II) in aqueous solution. Anal Chim Acta 559:234–239

    Article  CAS  Google Scholar 

  31. Chen B, Yu Y, Zhou ZT, Zhong P (2004) Synthesis of novel nanocrystals as fluorescent sensors for Hg2+ ions. Chem Lett 33:1608–1609

    Article  CAS  Google Scholar 

  32. Vlahovici A, Druta I, Andrei M, Cotlet M, Dinica R (1999) Photophysics of some indolizines, derivatives from bipyridyl, in various media. J Lumin 82:155–162

    Article  CAS  Google Scholar 

  33. Skoog and West, Fundamentals of Analytical Chemistry, 2nd Ed., Chapter 29.

  34. Vogel, A Textbook of Quantitative Inorganic Analysis, 3rd Ed., p. 294, 310 and 787.

Download references

Acknowledgments

One of the authors (Sheela Gopal M) is thankful to the University Grants Commission (UGC), India, for granting FIP and Department of Applied Chemistry CUSAT, Cochin for their technical support. The author Divya Thomas express the gratitude to Council of Scientific and Industrial Research (CSIR) for the award of research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anitha I.

Ethics declarations

Conflict of Interest

The authors declared that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

I, A., M, S.G. & Thomas, D. A New Fluorescent Sensor Based on Bisindolizine Derivative. J Fluoresc 26, 725–729 (2016). https://doi.org/10.1007/s10895-015-1760-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1760-5

Keywords

Navigation