Skip to main content
Log in

Novel Coumarin Substituted Water Soluble Cyclophosphazenes as “Turn-Off” Type Fluorescence Chemosensors for Detection of Fe3+ ions in Aqueous Media

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the present work, 3-[2-(diethylamino)ethyl]-7-oxy-4-methylcoumarin substituted cyclotriphosphazene (4) and cyclotetraphosphazene (5) derivatives were synthesized by the reactions of hexachlorocyclotriphosphazene (1) or octachlorocyclotetraphosphazene (2) with 3-[2-(diethylamino)ethyl]-7-hydroxy-4-methylcoumarin (3) for the first time. The quaternized cationic (6 and 7) and zwitterionic (8 and 9) derivatives of these compounds (4 and 5) were obtained by the reactions of dimethyl sulfate and 1,3-propanesultone, respectively. All newly synthesized cyclophosphazene compounds (49) were fully characterized by elemental analysis and general spectroscopic techniques such as FT-IR, 31P-NMR, 1H-NMR and MALDI-TOF mass. All these coumarin substituted cyclophosphazene compounds (49) were soluble in most of organic solvents and quaternized ionic and zwitterionic compounds (69) also showed excellent solubility in water. The fluorescence behaviors of novel cyclophosphazene compounds were investigated in methanol and water solutions. The chemosensor properties of newly synthesized water soluble quaternized ionic and zwitterionic cyclotriphosphazene and cyclotetraphosphazene derivatives (69) were investigated in aqueous media. These cyclophosphazene derivatives showed fluorescence chemosensor behavior with high selectivity for Fe3+ ions in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Carter KR, Calichman M, Allen CW (2009) Stereodirective effects in mixed substituent vinyloxycyclotriphosphazenes. Inorg Chem 48:7476–7481. doi:10.1021/ic9006923

    Article  CAS  PubMed  Google Scholar 

  2. Yenilmez Çiftçi G, Şenkuytu E, Durmuş M, Yuksel F, Kılıç A (2013) Fluorenylidene bridged cyclotriphosphazenes: ‘turn-off’ fluorescence probe for Cu2+ and Fe3+ ions. Dalton Trans 42:14916–14926. doi:10.1039/C3DT51426A

    Article  PubMed  Google Scholar 

  3. Liu X, Breon JP, Chen C, Allcock HR (2012) Substituent exchange reactions of trimeric and tetrameric aryloxycyclophosphazenes with sodium 2,2,2-trifluoroethoxide. Dalton Trans 41:2100–2109. doi:10.1039/c1dt11606a

    Article  CAS  PubMed  Google Scholar 

  4. Görür M, Yılmaz F, Kılıç A, Şahin ZM, Demirci A (2011) Synthesis of pyrene end-capped A6 dendrimer and star polymer with phosphazene core via “Click Chemistry”. J Polym Sci A1(49):3193–3206. doi:10.1002/pola.24756

    Article  Google Scholar 

  5. Allcock HR (1972) Recent advanced in phosphazene (phosphonitrilic) chemistry. Chem Rev 72:315–356. doi:10.1021/cr60278a002

    Article  CAS  Google Scholar 

  6. Kumaraswamy S, Vijjulatha M, Muthiah C, Kumara Swamy KC, Engelhardt U (1999) Synthesis, reactivity and structures of spirocyclic products derived from octachlorocyclotetraphosphazene: comparison with spirocyclic cyclotriphosphazenes and linear phosphazenes. J Chem Soc Dalton Trans 891–899. doi: 10.1039/A807373B

  7. Yenilmez Çiftçi G, Şenkuytu E, Durmuş M, Yuksel F, Kılıç A (2014) Structural and fluorescence properties of 2-naphthylamine substituted cyclotriphosphazenes. Inorg Chim Acta 423:489–495. doi:10.1016/j.ica.2014.09.001

    Article  Google Scholar 

  8. Gleria M, De Jaeger R (2004) Applicative aspects of cyclophosphazenes. Nova, Hauppauge

    Google Scholar 

  9. Rao MR, Bolligarla R, Butcher RJ, Ravikanth M (2010) Hexa boron-dipyrromethene cyclotriphosphazenes: synthesis, crystal structure, and photophysical properties. Inorg Chem 49:10606–10616. doi:10.1021/ic1016092

    Article  CAS  PubMed  Google Scholar 

  10. Abizanda D, Crespo O, Gimeno MC, Jimenez J, Laguna A (2003) Synthesis and structure of new carborane-substituted cyclotriphosphazenes. Chem Eur J 9:3310–3319. doi:10.1002/chem.200204703

    Article  CAS  PubMed  Google Scholar 

  11. Kumar D, Singh N, Keshav K, Elias AJ (2011) Ring-closing metathesis reactions of terminal alkene-derived cyclic phosphazenes. Inorg Chem 50:250–260. doi:10.1021/ic101884s

    Article  CAS  PubMed  Google Scholar 

  12. Ledger J, Boomishankar R, Steiner A (2010) Aqueous chemistry of chlorocyclophosphazenes: Phosphates {PO2}, phosphamides {P(O)NHR}, and the first phosphites {PHO} and pyrophosphates {(PO)2O} of these heterocycles. Inorg Chem 49:3896–3904. doi:10.1021/ic100076t

    Article  CAS  PubMed  Google Scholar 

  13. Moriya K, Suzuki T, Yano S, Miyajima S (2001) 31P and 13C NMR studies of a liquid-crystalline cyclotriphosphazene derivative: Orientational characteristics and contrasting shielding anisotropies for inorganic and organic moieties. J Phys Chem B 105:7920–7927. doi:10.1021/jp004299j

    Article  CAS  Google Scholar 

  14. Barbera J, Bardajı M, Jimenez J, Laguna A, Martinez JP, Serrano L, Zaragozano I (2005) Columnar mesomorphic organizations in cyclotriphosphazenes. J Am Chem Soc 127:8994–9002. doi:10.1021/ja051042w

    Article  CAS  PubMed  Google Scholar 

  15. Battez AH, González R, Viesca JL, Blanco D, Asedegbega E, Osorio A (2009) Tribological behaviour of two imidazolium ionic liquids as lubricant additives for steel/steel contacts. Wear 266:1224–1228. doi:10.1016/j.wear.2009.03.043

    Article  CAS  Google Scholar 

  16. Inoue K, Yamauchi T, Itoh T, Ihara E (2007) Ionic conductivity of cross-linked polymethacrylate derivatives/cyclophosphazenes/Li+ salt complexes. J Inorg Organomet Polym Mater 17:367–375. doi:10.1007/s10904-007-9126-3

    Article  CAS  Google Scholar 

  17. Klein RJ, Welna DT, Weikel AL, Allcock HR (2007) Counterion effects on ion mobility and mobile ion concentration of doped polyphosphazene and polyphosphazene ionomers. Macromolecules 40:3990–3995. doi:10.1021/ma070357o

    Article  CAS  Google Scholar 

  18. Huang WK, Yeh JT, Chen KJ (2001) Flame retardation improvement of aqueous-based polyurethane with aziridinyl phosphazene curing syste. J Appl Polym Sci 79:662–673. doi:10.1002/1097-4628(20010124)79:4<662::AID-APP100>3.0.CO;2-T

    Article  CAS  Google Scholar 

  19. Siwy M, Sek D, Kaczmarczyk B, Jaroszewicz I, Nasulewicz A, Pelczynska M, Nevozhay D, Opolski A (2006) Synthesis and in vitro antileukemic activity of some new 1,3-(oxytetraethylenoxy)cyclotriphosphazene derivatives. J Med Chem 49:806–810. doi:10.1021/jm0490078

    Article  CAS  PubMed  Google Scholar 

  20. Yıldırım T, Bilgin K, Yenilmez Çiftçi G, Tanrıverdi Eçik E, Şenkuytu E, Uludağ Y, Tomak L, Kılıç A (2012) Synthesis, cytotoxicity and apoptosis of cyclotriphosphazene compounds as anti-cancer agents. Eur J Med Chem 52:213–220. doi:10.1016/j.ejmech.2012.03.018

    Article  PubMed  Google Scholar 

  21. Elmas G, Okumuş A, Koç LY, Soltanzade H, Kılıç Z, Hökelek T, Dal H, Açık L, Üstündağ Z, Dündar D, Yavuz M (2014) Phosphorus–nitrogen compounds. Part 29. Syntheses, crystal structures, spectroscopic and stereogenic properties, electrochemical investigations, antituberculosis, antimicrobial and cytotoxic activities and DNA interactions of ansa-spiro-ansa cyclotetraphosphazenes. Eur J Med Chem 87:662–676. doi:10.1016/j.ejmech.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  22. Işıklan M, Asmafiliz N, Özalp EE, Ilter EE, Kılıc Z, Çosut B, Yeşilot S, Kılıç A, Öztürk A, Hökelek T, Bilir YK, Açık L, Akyuz E (2010) Phosphorus-nitrogen compounds. 21. Syntheses, structural investigations, biological activities, and DNA interactions of new N/O spirocyclic phosphazene derivatives. The NMR behaviors of chiral phosphazenes with stereogenic centers upon the addition of chiral solvating agents. Inorg Chem 49:7057–7071. doi:10.1021/ic100781v

    Article  PubMed  Google Scholar 

  23. Nair LS, Bhattacharyya S, Bender JD, Greish YE, Brown PW, Allcock HR, Laurencin CT (2004) Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications. Biomacromolecules 5:2212–2220. doi:10.1021/bm049759j

    Article  CAS  PubMed  Google Scholar 

  24. Li H, Cai L, Li J, Hu Y, Zhou P, Zhang J (2011) Novel coumarin fluorescent dyes: synthesis, structural characterization and recognition behavior towards Cu(II) and Ni(II). Dyes Pigments 91:309–316. doi:10.1016/j.dyepig.2011.05.011

    Article  CAS  Google Scholar 

  25. Danko M, Szabo E, Hrdlovic P (2011) Synthesis and spectral characteristics of fluorescent dyes based on coumarin fluorophore and hindered amine stabilizer in solution and polymer matrices. Dyes Pigments 90:129–138. doi:10.1016/j.dyepig.2010.12.006

    Article  CAS  Google Scholar 

  26. Singh RK, Mandal T, Balasubramanian N, Cook G, Srivastava DK (2011) Coumarin-suberoylanilide hydroxamic acid as a fluorescent probe for determining binding affinities and off-rates of histone deacetylase inhibitors. Anal Biochem 408:309–315. doi:10.1016/j.ab.2010.08.040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zhou S, Jia J, Rong Gao J, Han L, Li Y, Sheng W (2010) The one-pot synthesis and fluorimetric study of 3-(20-benzothiazolyl)coumarins. Dyes Pigments 86:123–128. doi:10.1016/j.dyepig.2009.12.005

    Article  CAS  Google Scholar 

  28. Sato S, Suzuki M, Soma T, Tsunoda M (2008) Synthesis and properties of umbelliferone-nitroxide radical hybrid compounds as fluorescence and spin-label probes. Spectrochim Acta A 70:799–804. doi:10.1016/j.saa.2007.09.015

    Article  Google Scholar 

  29. Zhou Z, Li N, Tong A (2011) A new coumarin-based fluorescence turn-on chemodosimeter for Cu2+ in water. Anal Chim Acta 702:81–86. doi:10.1016/j.aca.2011.06.041

    Article  CAS  PubMed  Google Scholar 

  30. Sashidhara KV, Kumar A, Kumar M, Sarkar J, Sinha S (2010) Synthesis and in vitro evaluation of novel coumarin–chalcone hybrids as potential anticancer agents. Bioorg Med Chem Lett 20:7205–7211. doi:10.1016/j.bmcl.2010.10.116

    Article  CAS  PubMed  Google Scholar 

  31. Reddy NS, Mallireddigari MR, Cosenza S, Gumireddy K, Bell SC, Reddy EP, Ramana Reddy MV (2004) Synthesis of new coumarin 3-(N-aryl) sulfonamides and their anticancer activity. Bioorg Med Chem Lett 14:4093–4097. doi:10.1016/j.bmcl.2004.05.016

    Article  CAS  PubMed  Google Scholar 

  32. Belluti F, Fontana G, Bo LD, Carenini N, Giommarelli C, Zunino F (2010) Design, synthesis and anticancer activities of stilbene-coumarin hybrid compounds: Identification of novel proapoptotic agents. Bioorg Med Chem 18:3543–3550. doi:10.1016/j.bmc.2010.03.069

    Article  CAS  PubMed  Google Scholar 

  33. Stanchev S, Hadjimitova V, Traykov T, Boyanov T, Manolova I (2009) Investigation of the antioxidant properties of some new 4-hydroxycoumarin derivatives. Eur J Med Chem 44:3077–3082. doi:10.1016/j.ejmech.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  34. O’Kennedy R, Douglas R (1997) Coumarins: biology, applications and mode of action. Wiley, New York

    Google Scholar 

  35. Hong SW, Jo WH (2008) A fluorescence resonance energy transfer probe for sensing pH in aqueous solution. Polymer 49:4180–4187. doi:10.1016/j.polymer.2008.07.044

    Article  CAS  Google Scholar 

  36. Aliaga C, Juárez-Ruiz JM, Scaiano JC, Aspée A (2008) Hydrogen-transfer reactions rom phenols to TEMPO prefluorescent probes in micellar systems. Org Lett 10:2147–2150. doi:10.1021/ol800446c

    Article  CAS  PubMed  Google Scholar 

  37. Du L, Li N, Li M, Wang B (2010) A fluorescent hydrogen peroxide probe based on a ‘click’ modified coumarin fluorophore. Tetrahedron Lett 51:1152–1154. doi:10.1016/j.tetlet.2009.12.049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kozlowski H, Janicka-Klos A, Brasun J, Gaggelli E, Valensin D, Valensin G (2009) Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coord Chem Rev 253:2665–2685. doi:10.1016/j.ccr.2009.05.011

    Article  CAS  Google Scholar 

  39. Yao J, Dou W, Qin W, Liu W (2009) A new coumarin-based chemosensor for Fe3+ in water. Inorg Chem Commun 12:116–118. doi:10.1016/j.inoche.2008.11.012

    Article  CAS  Google Scholar 

  40. Zhang D, Zou R, Wang M, Chai M, Wang X, Ye Y, Zhao Y (2013) A novel series colorimetric and off–on fluorescent chemosensors for Fe3+ based on rhodamine B derivative. J Fluoresc 23:13–19. doi:10.1007/s10895-012-1118-1

    Article  PubMed  Google Scholar 

  41. Liu CM, Qiu JJ, Bao R, Zhao C, Cheng XJ, Xu Y, Zhou Y (2006) Synthesis and characterization of coumarin-containing polyphosphazene. React Funct Polym 66:455–464. doi:10.1016/j.reactfunctpolym.2005.09.005

    Article  CAS  Google Scholar 

  42. Gudasi KB, Vadavi RS, Sairam M, Aminabhavi TM (2006) Synthesis and characterization of coumarin-substituted polyorganophosphazene. Des Monomers Polym 9:517–526. doi:10.1163/156855506778538065

    Article  CAS  Google Scholar 

  43. Kononenko YT, Bogdal D, Yashchuk VM, Burczyk A, Pielichowski J, Kushnir KM (2006) Dynamics of electron-vibrational excitation of polyphosphazenes containing carbazole and coumarin. J Mol Liq 127:118–120. doi:10.1016/j.molliq.2006.03.031

    Article  CAS  Google Scholar 

  44. Chandrasekhar V, Pandey MD, Das B, Mahanti B, Gopal K, Azhakar R (2011) Synthesis, structure and photo-physical properties of phosphorus-supported fluorescent probes. Tetrahedron 67:6917–6926. doi:10.1016/j.tet.2011.06.073

    Article  CAS  Google Scholar 

  45. Yenilmez Çiftçi G, Tanrıverdi Eçik E, Bulut M, Yuksel F, Kılıç A, Durmuş M (2013) Synthesis and characterization of dicoumarol substituted cyclotriphosphazenes. Inorg Chim Acta 398:106–112. doi:10.1016/j.ica.2012.12.019

    Article  Google Scholar 

  46. Uslu A, Güvenaltın S (2010) The investigation of structural and thermosensitive properties of new phosphazene derivatives bearing glycol and amino acid. Dalton Trans 39:10685–10691. doi:10.1039/C0DT00818D

    Article  CAS  PubMed  Google Scholar 

  47. Omotowa BA, Phillips BS, Zabinski JS, Shreeve JM (2004) Phosphazene-based ionic liquids: synthesis, temperature-dependent viscosity, and effect as additives in water lubrication of silicon nitride ceramics. Inorg Chem 43:5466–5471. doi:10.1021/ic049483o

    Article  CAS  PubMed  Google Scholar 

  48. Allcock HR, Singh A, Ambrosio AMA, Laredo WR (2003) Tyrosine-bearing polyphosphazenes. Biomacromolecules 4:1646–1653. doi:10.1021/bm030027l

    Article  CAS  PubMed  Google Scholar 

  49. Allcock HR, Levin ML, Austin PE (1986) Quaternized cyclic and high polymeric phosphazenes and their interactions with tetracyanoquinodimethane. Inorg Chem 25:2281–2288. doi:10.1021/ic00234a002

    Article  CAS  Google Scholar 

  50. Huang L, Cheng J, Xie K, Xi P, Hou F, Li Z, Xie G, Shi Y, Liu H, Bai D, Zeng Z (2011) Cu2+-selective fluorescent chemosensor based on coumarin and its application in bioimaging. Dalton Trans 40:10815–10817. doi:10.1039/C1DT11123J

    Article  CAS  PubMed  Google Scholar 

  51. Zhu M, Yuan M, Liu X, Xu J, Lv J, Huang C, Liu H, Li Y, Wang S, Zhu D (2008) A visible near-infrared chemosensor for mercury ion. Org Lett 10:1481–1484. doi:10.1021/ol800197t

    Article  CAS  PubMed  Google Scholar 

  52. Liu SR, Wu SP (2012) New water-soluble highly selective fluorescent chemosensor for Fe (III) ions and its application to living cell imaging. Sensors Actuators B 171–172:1110–1116. doi:10.1016/j.snb.2012.06.041

    Article  Google Scholar 

  53. Li Z, Zhou Y, Yin K, Yu Z, Li Y, Ren J (2014) A new fluorescence “turn-on” type chemosensor for Fe3+ based on naphthalimide and coumarin. Dyes Pigments 105:7–11. doi:10.1016/j.dyepig.2013.12.032

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thanks the Gebze Technical University Research Fund for partial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gönül Yenilmez Çiftçi or Mahmut Durmuş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çiftçi, G.Y., Şenkuytu, E., Bulut, M. et al. Novel Coumarin Substituted Water Soluble Cyclophosphazenes as “Turn-Off” Type Fluorescence Chemosensors for Detection of Fe3+ ions in Aqueous Media. J Fluoresc 25, 1819–1830 (2015). https://doi.org/10.1007/s10895-015-1672-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1672-4

Keywords

Navigation