Skip to main content
Log in

A Note on the use of Steady–State Fluorescence Quenching to Quantify Nanoparticle–Protein Interactions

  • SHORT COMMUNICATION
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Steady–state fluorescence quenching is a commonly used technique to investigate the interactions between proteins and nanoparticles, providing quantitative information on binding affinity, stoichiometry and cooperativity. However, a failure to account for the limitations and pitfalls of the methodology can lead to significant errors in data analysis and interpretation. Thus, in this communication we first draw attention to a few common pitfalls in the use of fluorescence quenching to study nanoparticle–protein interactions. For example, we discuss a frequent mistake in the use of the Hill equation to determine cooperativity. We also test using both simulated and experimental data the application of a model–independent method of analysis to generate true thermodynamic nanoparticle–protein binding isotherms. This model–free approach allows for a quantitative description of the interactions independent of assumptions about the nature of the binding process [Bujalowski W, Lohman TM (1987) Biochemistry 26: 3099; Schwarz G (2000) Biophys. Chem. 86: 119].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Treuel L, Nienhaus GU (2012) Toward a molecular understanding of nanoparticle–protein interactions. Biophys Rev 4:137–147

    Article  CAS  Google Scholar 

  2. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A 104:2050–2055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Tonga GY, Saha K, Rotello VM (2014) 25th anniversary article: interfacing nanoparticles and biology: new strategies for biomedicine. Adv Mater 26:359–370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Pd P, Pelaz B, Zhang Q, Maffre P, Nienhaus GU, Parak WJ (2014) Protein corona formation around nanoparticles – from the past to the future. Mater Horiz 1:301–313

    Article  Google Scholar 

  5. Xiao Q, Huang S, Su W, Li P, Ma J, Luo F, Chen J, Liu Y (2013) Systematically investigations of conformation and thermodynamics of HSA adsorbed to different sizes of CdTe quantum dots. Colloids Surf B: Biointerfaces 102:76–82

    Article  CAS  PubMed  Google Scholar 

  6. Liang J, Cheng Y, Han H (2008) Study on the interaction between bovine serum albumin and CdTe quantum dots with spectroscopic techniques. J Mol Struct 892:116–120

    Article  CAS  Google Scholar 

  7. Jhonsi MA, Kathiravan A, Renganathan R (2009) Spectroscopic studies on the interaction of colloidal capped CdS nanoparticles with bovine serum albumin. Colloids Surf B: Biointerfaces 72:167–172

    Article  Google Scholar 

  8. Shang L, Dörlich RM, Trouillet V, Bruns M, Nienhaus GU (2012) Ultrasmall fluorescent silver nanoclusters: protein adsorption and its effects on cellular responses. Nano Res 5:531–542

    Article  CAS  Google Scholar 

  9. Shang L, Yang L, Seiter J, Heinle M, Brenner-Weiss G, Gerthsen D, Nienhaus GU (2014) Nanoparticles interacting with proteins and cells: a systematic study of protein surface charge effects. Adv Mater Interfaces 1:2014

    Article  Google Scholar 

  10. Boulos SP, Davis TA, Yang JA, Lohse SE, Alkilany AM, Holland LA, Murphy CJ (2013) Nanoparticle − protein interactions: a thermodynamic and kinetic study of the adsorption of bovine serum albumin to gold nanoparticle surfaces. Langmuir 29:14984–14996

    Article  CAS  PubMed  Google Scholar 

  11. Yang JA, Johnson BJ, Wu S, Woods WS, George JM, Murphy CJ (2013) Study of wild-type α-synuclein binding and orientation on gold nanoparticles. Langmuir 29:4603–4615

    Article  CAS  PubMed  Google Scholar 

  12. Lacerda SHDP, Park JJ, Meuse C, Pristinski D, Becker ML, Karim A, Douglas JF (2010) Interaction of gold nanoparticles with common human blood proteins. ACSNano 4:365–379

    Google Scholar 

  13. Andrews AJ, Downing G, Brown K, Park Y-J, Luger1 K (2008) A thermodynamic model for Nap1-histone interactions. J Biol Chem 283:32412–32418

  14. Carpenter ML, Oliver AW, Kneale GG (2001) Analysis of DNA-protein interactions by intrinsic fluorescence. Methods Mol Biol 148:491–502

    CAS  PubMed  Google Scholar 

  15. Beckett D (2011) Measurement and analysis of equilibrium binding titrations: a beginner’s guide. Methods Enzymol 488:1–16

    Article  CAS  PubMed  Google Scholar 

  16. Lissi E, Abuin E (2011) On the evaluation of the number of binding sites in proteins from steady state fluorescence measurements. J Fluoresc 21:1831–1833

    Article  CAS  PubMed  Google Scholar 

  17. Bujalowski W, Jezewska MJ (2014) Quantitative thermodynamic analyses of spectroscopic titration curves. J Mol Struct 1077:40–50

    Article  CAS  PubMed  Google Scholar 

  18. Mvd W (2010) Fluorescence quenching to study protein-ligand binding: common errors. J Fluoresc 20:625–629

    Article  Google Scholar 

  19. Mvd W, Stella L (2011) Fluorescence quenching and ligand binding: a critical discussion of a popular methodology. J Mol Struct 998:144–150

    Article  Google Scholar 

  20. Stella L, Mvd W, Burrows HD, Fausto R (2014) Fluorescence spectroscopy and binding: getting it right. J Mol Struct 1077:1–3

    Article  CAS  Google Scholar 

  21. Grossweiner LI (2000) A note on the analysis of ligand binding by the ‘double-logarithmic’ plot. J Photochem Photobiol B: Biology 58:175–177

    Article  CAS  PubMed  Google Scholar 

  22. Lissi E, Calderon C, Campos A (2013) Evaluation of the number of binding sites in proteins from their intrinsic fluorescence: limitations and pitfalls. Photochem Photobiol 89:1413–1416

    Article  CAS  PubMed  Google Scholar 

  23. Stella L, Capodilupo AL, Bietti M (2008) A reassessment of the association between azulene and [60]fullerene. Possible pitfalls in the determination of binding constants through fluorescence spectroscopy. Chem Commun (39):4744–4746

  24. Bujalowski W, Lohman TM (1987) A general method of analysis of ligand-macromolecule equilibria using a spectroscopic signal from the ligand to monitor binding. Application to Escherichia coli Single-Strand Binding Protein-Nucleic Acid Interactions. Biochemistry 26:3099–3106

    Article  CAS  PubMed  Google Scholar 

  25. Bujalowski W (2006) Thermodynamic and kinetic methods of analyses of protein − nucleic acid interactions. From Simpler to More Complex Systems. Biochemistry 106:556–606

    CAS  Google Scholar 

  26. Schwarz G (2000) A universal thermodynamic approach to analyze biomolecular binding experiments. Biophys Chem 86:119–129

    Article  CAS  PubMed  Google Scholar 

  27. Bisswanger H (2008) Multiple equilibria. In: Bisswanger H (ed) Enzyme kinetics: principles and methods, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 7–58

    Chapter  Google Scholar 

  28. Adair GS (1925) The hemoglobin system. The Oxygen dissociation Curve of Haemoglobin. J Biol Chem 63:529–545

    CAS  Google Scholar 

  29. Zhang D, Nettles CB (2015) A generalized model on the effects of nanoparticles on fluorophore fluorescence in solution. J Phys Chem C 119:7941–7948

    Article  CAS  Google Scholar 

  30. Credi A, Prodi L (2014) Inner filter effects and other traps in quantitative spectrofluorimetric measurements: origins and methods of correction. J Mol Struct 1077:30–39

    Article  CAS  Google Scholar 

  31. Shang L, Brandholt S, Stockmar F, Trouillet V, Bruns M, Nienhaus GU (2012) Effect of protein adsorption on the fluorescence of ultrasmall gold nanoclusters. Small 8:661–665

    Article  CAS  PubMed  Google Scholar 

  32. Bunz UHF, Rotello VM (2010) Gold nanoparticle–fluorophore complexes: sensitive and discerning “noses” for biosystems sensing. Angew Chem Int Ed 39:3268–3279

    Article  Google Scholar 

  33. Kuzmic P (1996) Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal Biochem 237:260–273

    Article  CAS  PubMed  Google Scholar 

  34. Ackerson CJ, Powell RD, Hainfeld JF (2010) Site-specific biomolecule labeling with gold clusters. Methods Enzymol 481:195–230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sousa AA, Morgan JT, Brown PH, Adams A, Jayasekara MPS, Zhang G, Ackerson CJ, Kruhlak MJ, Leapman RD (2012) Synthesis, characterization, and direct intracellular imaging of ultrasmall and uniform glutathione-coated gold nanoparticles. Small 8:2277–2286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. You C-C, Miranda OR, Gider B, Ghosh PS, Kim I-B, Erdogan B, Krovi SA, Bunz UHF, Rotello VM (2007) Detection and identification of proteins using nanoparticle–fluorescent polymer ‘chemical nose’ sensors. Nat Nanotech 2:318–323

    Article  CAS  Google Scholar 

  37. Aguila A, Murray RW (2000) Monolayer-protected clusters with fluorescent dansyl. Langmuir 16:5949–5954

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the São Paulo Research Foundation (FAPESP grant # 2013/18481-5), São Paulo, Brazil, and by the National Council for Scientific and Technological Development (CNPq grant # 476784/2013-1), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alioscka A. Sousa.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, A.A. A Note on the use of Steady–State Fluorescence Quenching to Quantify Nanoparticle–Protein Interactions. J Fluoresc 25, 1567–1575 (2015). https://doi.org/10.1007/s10895-015-1665-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1665-3

Keywords

Navigation