Skip to main content
Log in

A Spectroscopy Approach for the Study of the Interaction of Oxovanadium(IV)-Salen Complexes with Proteins

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Oxovanadium(IV)-salen complexes bind with bovine serum albumin (BSA) and ovalbumin (OVA) strongly with binding constant in the range 104–107 M−1 at physiological pH (7.4) confirmed using UV–visible absorption, fluorescence spectral and circular dichroism (CD) study. CD results show that the binding of oxovanadium(IV) complexes induces the conformational change with the loss of α-helicity in the proteins. Docking studies indicate that mode of binding of oxovanadium(IV)-salen complexes with proteins is hydrophobic in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Chart 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  CAS  PubMed  Google Scholar 

  2. Brunaldi K, Huang N, Hamilton JA (2010) Interactions of very long-chain saturated fatty acids with serum albumin. J Lipid Res 51:120–131

    Article  PubMed Central  PubMed  Google Scholar 

  3. Shim YY, Reaney MJT (2015) Kinetic interactions between cyclolinopeptides and immobilized human serum albumin by surface Plasmon resonance. J Agric Food Chem 63:1099–1106

    Article  CAS  Google Scholar 

  4. Yamashita MM, Wesson L, Eisenman G, Eisenberg D (1990) Where metal ions bind in proteins. Proc Natl Acad Sci U S A 87:5648–5652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bal W, Christodoulou J, Sadler PJ, Tucker A (1998) Multi-metal binding site of serum albumin. J Inorg Biochem 70:33–39

    Article  CAS  PubMed  Google Scholar 

  6. Rawel HM, Rohn S, Kruse HP, Kroll J (2002) Structural changes induced in bovine serum albumin by covalent attachment of chlorogenic acid. Food Chem 78:443–455

    Article  CAS  Google Scholar 

  7. Zhang Y, Wilcox DE (2002) Thermodynamic and spectroscopic study of Cu(II) and Ni(II) binding to bovine serum albumin. J Biol Inorg Chem 7:327–337

    Article  CAS  PubMed  Google Scholar 

  8. Papadopoulou A, Green RJ, Frazier RA (2005) Interaction of flavonoids with bovine serum albumin: a fluorescence quenching study. J Agric Food Chem 53:158–163

    Article  CAS  PubMed  Google Scholar 

  9. Filenko A, Demchenko M, Mustafaeva Z, Osada Y, Mustafaev M (2001) Fluorescence study of Cu2+ − induced interaction between albumin and anionic polyelectrolytes. Biomacromolecule 2:270–277

    Article  CAS  Google Scholar 

  10. Rosenoer VM, Oratz M, Rothschild MA (eds) (1977) Albumin structure, function and uses. Progman Press Inc., Oxford

    Google Scholar 

  11. Peters T (1985) Serum albumin. Adv Protein Chem 37:161–245

    Article  CAS  PubMed  Google Scholar 

  12. Zhou N, Liang Y-Z, Wang P (2007) 18β-glycyrrhetinic acid interaction with bovine serum albumin. J Photochem Photobiol A Chem 185:271–276

    Article  CAS  Google Scholar 

  13. Shang L, Jiang X, Dong S (2006) In vitro study on the binding of neutral red to bovine serum albumin by molecular spectroscopy. J Photochem Photobiol A Chem 184:93–97

    Article  CAS  Google Scholar 

  14. Mine Y, Noutomi T, Haga N (1991) Emulsifying and structural properties of ovalbumin. J Agric Food Chem 39:443–446

    Article  CAS  Google Scholar 

  15. Venturoli D, Rippe B (2005) Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am J Physiol Renal Physiol 288:F605–F613

    Article  CAS  PubMed  Google Scholar 

  16. Cannan RK, Kibrick A, Palmer AH (1941) The amphoteric properties of egg albumin. Ann N Y Acad Sci 41:243–266

    Article  CAS  Google Scholar 

  17. Hu HY, Du HN (2000) Alpha to beta structural transformation of ovalbumin: heat and pH effects. J Protein Chem 19:177–183

    Article  CAS  PubMed  Google Scholar 

  18. Nisbet AD, Saundry RH, Moir AJG, Fothergill LA, Fothergill JE (1981) The complete amino-acid sequence of hen ovalbumin. Eur J Biochem 115:335–345

    Article  CAS  PubMed  Google Scholar 

  19. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. de Groot J, de Jongh HHJ (2003) The presence of heat‐stable conformers of ovalbumin affects properties of thermally formed aggregates. Protein Eng 16:1035–1040

    Article  PubMed  Google Scholar 

  21. Nakamura R, Ishamaru M (1981) Changes in the shape and surface hydrophobicity of ovalbumin during its transformation to s-ovalbumin. Agric Biol Chem 45:2775–2780

    Article  CAS  Google Scholar 

  22. Arntfield SD, Murray ED, Ismond MAH (1991) Role of disulfide bonds in determining the rheological and microstructural properties of heat-induced protein networks from ovalbumin and vicilin. J Agric Food Chem 39:1378–1385

    Article  CAS  Google Scholar 

  23. Lo KK-W, Louie M-W, Zhang KY (2010) Design of luminescent iridium(III) and rhenium(I) polypyridine complexes as in vitro and in vivo ion, molecular and biological probes. Coord Chem Rev 254:2603–2622

    Article  CAS  Google Scholar 

  24. Meggers E (2009) Targeting proteins with metal complexes. Chem Commun 1001–1010

  25. Maksimoska J, Feng L, Harms K, Yi C, Kissil J, Marmorstein R, Meggers E (2008) Targeting large kinase active site with rigid, bulky octahedral ruthenium complexes. J Am Chem Soc 130:15764–15765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Malcahy SP, Meggers E (2010) Organometallics as structural scaffolds for enzyme inhibitor design. Top Organomet Chem 32:141–153

    Google Scholar 

  27. Bhuvaneswari J, Muthu Mareeswaran P, Shanmugasundaram S, Rajagopal S (2011) Protein binding studies of luminescent rhenium(I) diimine complexes. Inorg Chim Acta 375:205–212

    Article  CAS  Google Scholar 

  28. Babu E, Muthu Mareeswaran P, Singaravadivel S, Bhuvaneswari J, Rajagopal S (2014) A selective, long-lived deep-red emissive ruthenium(II) polypyridine complexes for the detection of BSA. Spectrochim Acta A 130:553–560

    Article  CAS  Google Scholar 

  29. Gomathi Sankareswari V, Vinod D, Mahalakshmi A, Alamelu M, Kumaresan G, Ramaraj R, Rajagopal S (2014) Interaction of oxovanadium(IV)–salphen complexes with bovine serum albumin and their cytotoxicity against cancer. Dalton Trans 43:3260–3272

    Article  CAS  PubMed  Google Scholar 

  30. Liu C, Xu H (2002) The metal site as a template for the metalloprotein structure formation. J Inorg Biochem 88:77–86

    Article  CAS  PubMed  Google Scholar 

  31. Barrio DA, Etcheverry SB (2010) Potential use of vanadium compounds in therapeutics. Curr Med Chem 17:3632–3642

    Article  CAS  PubMed  Google Scholar 

  32. Balaji B, Somyajit K, Banik B, Nagaraju G, Chakravarty AR (2013) Photoactivated DNA cleavage and anticancer activity of oxovanadium(IV) complexes of curcumin. Inorg Chim Acta 400:142–150

    Article  CAS  Google Scholar 

  33. Rehder D (1995) In: Sigel A, Sigel H (Eds) Metal ions in biological systems. Marcel Dekker, New York, 31:1–43

  34. Crans DC, Smee JJ, Gaidamauskas E, Yang L (2004) The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104:849–902

    Article  CAS  PubMed  Google Scholar 

  35. Stankiewicz PJ, Tracey AS, Crans DC (1995) In: Sigel A, Sigel H (Eds) Metal ions in biological systems. Marcel Dekker, New York, 31:287–324

  36. Pessoa JC, Tomaz I (2010) Transport of therapeutic vanadium and ruthenium complexes by blood plasma components. Curr Med Chem 17:3701–3738

    Article  CAS  PubMed  Google Scholar 

  37. Thompson KH, McNeill JH, Orvig C (1999) Vanadium compounds as insulin mimics. Chem Rev 99:2561–2572

    Article  CAS  PubMed  Google Scholar 

  38. Thompson KH, Orvig C (2001) Coordination chemistry of vanadium in metallopharmaceutical candidate compounds. Coord Chem Rev 219:1033–1053

    Article  Google Scholar 

  39. Shechter Y, Goldwaser I, Mironchik M, Fridkin M, Gefel D (2003) Historic perspective and recent developments on the insulin-like actions of vanadium; toward developing vanadium-based drugs for diabetes. Coord Chem Rev 237:3–11

    Article  CAS  Google Scholar 

  40. Kawabe K, Yoshikawa Y, Adachi Y, Sakurai H (2006) Possible mode of action for insulinomimetic activity of vanadyl(IV) compounds in adipocytes. Life Sci 78:2860–2866

    Article  CAS  PubMed  Google Scholar 

  41. Sun H, Cox MC, Li H, Sadler PJ (1997) Rationalisation of binding to transferrin: prediction of metal-protein stability constant. Struct Bond 88:71–102

    Article  CAS  Google Scholar 

  42. Chasteen ND (1977) Human serotransferrin: structure and function. Coord Chem Rev 22:1–36

    Article  CAS  Google Scholar 

  43. Chasteen ND, Grady JK, Holloway CE (1986) Characterization of the binding, kinetics, and redox stability of vanadium(IV) and vanadium(V) protein complexes in serum. Inorg Chem 25:2754–2760

    Article  CAS  Google Scholar 

  44. Liboiron BD, Thompson KH, Hanson GR, Lam E, Aebischer N, Orvig C (2005) New insights into the interactions of serum proteins with bis(maltolato)oxovanadium(IV): transport and biotransformation of insulin-enhancing vanadium pharmaceuticals. J Am Chem Soc 127:5104–5115

    Article  CAS  PubMed  Google Scholar 

  45. Chasteen ND (1995) Vanadium-protein interactions. Met Ions Biol Syst 31:231–247

    CAS  PubMed  Google Scholar 

  46. Rehder D (2015) The role of vanadium in biology. Metallomics. doi:10.1039/C4MT00304G

    PubMed  Google Scholar 

  47. Mustafi D, Peng B, Foxley S, Makinen MW, Karczmar GS, Zamora M, Ejnik J, Martin H (2009) New vanadium-based magnetic resonance imaging probes: clinical potential for early detection of cancer. J Biol Inorg Chem 14:1187–1197

    Article  CAS  PubMed  Google Scholar 

  48. Heinemann G, Fichtl B, Mentler M, Vogt W (2002) Binding of vanadate to human albumin in infusion solutions, to proteins in human fresh frozen plasma, and to transferrin. J Inorg Biochem 90:38–42

    Article  CAS  PubMed  Google Scholar 

  49. Purcell M, Neault JF, Malonga H, Arakawa H, Tajmir-Riahi HA (2001) Interaction of human serum albumin with oxovanadium ions studied by FT-IR spectroscopy and gel and capillary electrophoresis. Can J Chem 79:1415–1421

    Article  CAS  Google Scholar 

  50. Makinen MW, Brady MJ (2002) Structural origins of the insulin-mimetic activity of bis(acetylacetonato)oxovanadium(IV). J Biol Chem 277:12215–12220

    Article  CAS  PubMed  Google Scholar 

  51. Harford C, Sarkar B (1997) Amino terminal Cu(II)- and Ni(II)-binding (ATCUN) motif of proteins and peptides: metal binding, DNA cleavage, and other properties. Acc Chem Res 30:123–130

    Article  CAS  Google Scholar 

  52. Sasmal PK, Saha S, Majumdar R, De S, Dighe RR, Chakaravarty AR (2010) Oxovanadium(IV) complexes of phenanthroline bases: the dipyridophenazine complex as a near-IR photocytotoxic agent. Dalton Trans 39:2147–2158

    Article  CAS  PubMed  Google Scholar 

  53. Sakurai H, Fujii K, Fujimoto S, Fujisawa Y, Takechi K, Yasui H (1998) Structure-activity relationship of insulin-mimetic vanadyl complexes with VO(N2O2) coordination mode. ACS Symp Ser 711:344–352

    Article  CAS  Google Scholar 

  54. Baran EJ (2000) Oxovanadium (IV) and oxovanadium(V) complexes relevant to biological systems. J Inorg Biochem 80:1–10

    Article  CAS  PubMed  Google Scholar 

  55. Nechay BR, Nanninga LB, Nechay PSE (1986) Vanadyl (IV) and vanadate (V) binding to selected endogenous phosphate, carboxyl, and amino ligands; calculations of cellular vanadium species distribution. Arch Biochem Biophys 251:128–138

    Article  CAS  PubMed  Google Scholar 

  56. Chen D, Martell AE (1987) Dioxygen affinities of synthetic cobalt Schiff base complexes. Inorg Chem 26:1026–1030

    Article  CAS  Google Scholar 

  57. Thornback JR, Wilkinson G (1978) Schiff-base complexes of ruthenium(II). J Chem Soc Dalton Trans 110–115

  58. Bonadies JA, Carrano CJ (1986) Vanadium phenolates as models for vanadium in biological systems. 1. Synthesis, spectroscopy, and electrochemistry of vanadium complexes of ethylenebis[(o-hydroxyphenyl)glycine] and its derivatives. J Am Chem Soc 108:4088–4095

    Article  CAS  Google Scholar 

  59. Mathavan A, Ramdass A, Rajagopal S (2015) Kinetic study of the oxovanadium(IV)-salen catalyzed H2O2 oxidation of phenols. Transit Met Chem 40:355–362

    Article  CAS  Google Scholar 

  60. Ando R, Mori S, Hayashi M, Yagyu T, Maeda M (2004) Structural characterization of pentadentate salen-type Schiff-base complexes of oxovanadium(IV) and their use in sulfide oxidation. Inorg Chim Acta 357:1177–1184

    Article  CAS  Google Scholar 

  61. Mathavan A, Ramdass A, Ramachandran M, Rajagopal S (2015) Oxovanadium(IV)-salen ion catalyzed H2O2 oxidation of tertiary amines to N-oxides–critical role of acetate ion as external axial ligand. In J Chem Kinet 47:315–326

    Article  CAS  Google Scholar 

  62. Smith KI, Borer LL, Olmsted MM (2003) Vanadium(IV) and Vanadium(V) complexes of salicyladimine ligands. Inorg Chem 42:7410–7415

    Article  CAS  PubMed  Google Scholar 

  63. Maurya MR, Kumar M, Kumar A, Pessoa JC (2008) Oxidation of p-chlorotoluene and cyclohexene catalysed by polymer-anchored oxovanadium(IV) and copper(II) complexes of amino acid derived tridentate ligands. Dalton Trans 4220–4232

  64. Adeo P, Pessoa JC, Henriques RT, Kuznetsov ML, Avecilla F, Maurya MR, Kumar U, Correia I (2009) Synthesis, characterization, and application of vanadium − salan complexes in oxygen transfer reactions. Inorg Chem 48:3542–3561

    Article  Google Scholar 

  65. Alsalim TA, Hadi JS, Al-Nasir EA, Abbo HS, Titinchi SJJ (2010) Hydroxylation of phenol catalyzed by oxovanadium (IV) of salen-type Schiff base complexes with hydrogen peroxide. Catal Lett 136:228–233

    Article  CAS  Google Scholar 

  66. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Plenum Press, New York

    Book  Google Scholar 

  67. Hu Y-J, Liu Y, Zhang L-X, Zhao R-M, Qu S-S (2005) Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. J Mol Struct 750:174–178

    Article  CAS  Google Scholar 

  68. Espenson JH (1995) Chemical kinetics and reaction mechanisms. McGraw-Hill. Inc, New York

    Google Scholar 

  69. Bhuvaneswari J, Fathima AK, Rajagopal S (2012) Rhenium(I)-based fluorescence resonance energy transfer probe for conformational changes of bovine serum albumin. J Photochem Photobiol A Chem 227:38–44

    Article  CAS  Google Scholar 

  70. Wetlaufer DB (1962) In: Anfinsen CB, Bailey K, Anson ML, Edsall JT (eds) Advances in protein chemistry. Academic Press, New York, pp. 303–390

    Google Scholar 

  71. Shi X, Li X, Gui M, Zhou H, Yang R, Zhang H, Jin Y (2010) Studies on interaction between flavonoids and bovine serum albumin by spectral methods. J Lumin 130:637–644

    Article  CAS  Google Scholar 

  72. Bourassa P, Kanakis CD, Tarantilis P, Pollissiou MG, Tajmir-Riahi HA (2010) Resveratrol, genistein, and curcumin bind bovine serum albumin. J Phys Chem B 114:3348–3354

    Article  CAS  PubMed  Google Scholar 

  73. Kragh-Hansen U (1981) Molecular aspects of ligand binding to serum albumin. Pharmacol Rev 33:17–53

    CAS  PubMed  Google Scholar 

  74. Greenfield NJ, Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8:4108–4116

    Article  CAS  PubMed  Google Scholar 

  75. Peterman BF, Laidler KJ (1980) Study of reactivity of tryptophan residues in serum albumins and lysozyme by N-bromosuccinamide fluorescence quenching. Arch Biochem Biophys 199:158–164

    Article  CAS  PubMed  Google Scholar 

  76. Yuan C, Lu L, Wu Y, Liu Z, Guo M, Xing S, Fu X, Zhu M (2010) Synthesis, characterization, and protein tyrosine phosphatases inhibition activities of oxovanadium(IV) complexes with Schiff base and polypyridyl derivatives. J Inorg Biochem 104:978–986

    Article  CAS  PubMed  Google Scholar 

  77. Yuan C, Lu L, Gao X, Wu Y, Guo M, Li Y, Fu X, Zhu M (2009) Ternary oxovanadium(IV) complexes of ONO-donor Schiff base and polypyridyl derivatives as protein tyrosine phosphatase inhibitors: synthesis, characterization, and biological activities. J Biol Inorg Chem 14:841–851

    Article  CAS  PubMed  Google Scholar 

  78. Bardhan M, Chowdhury J, Ganguly T (2011) Investigations on the interactions of aurintricarboxylic acid with bovine serum albumin: steady state/time resolved spectroscopic and docking studies. J Photochem Photobiol B Biol 102:11–19

    Article  CAS  Google Scholar 

  79. Bhattacharya B, Nakka S, Guruprasad L, Samanta A (2009) Interaction of bovine serum albumin with dipolar molecules: fluorescence and molecular docking studies. J Phys Chem B 113:2143–2150

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Prof. S.R thanks UGC, New Delhi for sanctioning UGC-BSR Faculty and UGC Emeritus Fellowships. AM thanks the UGC, New Delhi and the Management of V. O. C. College, Tuticorin for sanctioning permission to avail the benefits of Faculty Development Programme (FDP). A.R is the recipient of UGC Meritorious fellowship under the Basic Scientific Research (BSR) Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seenivasan Rajagopal.

Electronic supplementary material

ESM 1

(DOC 368 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathavan, A., Ramdass, A. & Rajagopal, S. A Spectroscopy Approach for the Study of the Interaction of Oxovanadium(IV)-Salen Complexes with Proteins. J Fluoresc 25, 1141–1149 (2015). https://doi.org/10.1007/s10895-015-1604-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1604-3

Keywords

Navigation