Skip to main content
Log in

NIR-Emitting Boradiazaindacene Fluorophores -TD-DFT Studies on Electronic Structure and Photophysical Properties

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Density Functional Theory [B3LYP/6-31G(d)] and Time Dependent Density Functional Theory [TD-B3LYP/6-31G(d)] computations have been used to have more understanding of the structural, molecular, electronic and photophysical parameters of recently synthesized near IR-emitting acid switchable di-styryl BODIPY dyes. The structures have been optimized using function B3LYP and basis set used was 6-31G(d) for all the atoms and their geometries which are correlated with corresponding rotational isomers including rotational isomers of diprotonated forms in chloroform solvent. The observed energies of the optimized molecules suggest that there may be rotation about C-C single bond as the observed energy barrier is very low. The results of TD-DFT suggest that there is very good match between the observed and calculated absorptions diprotonated forms of one molecule. There is also good match between experimental and theoretical emission of neutral forms. More deviations are observed in the case emission of the diprotonated forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Treibs A, Kreuzer F-H (1968) Difluorboryl-Komplexe von Di- und Tripyrrylmethenen. Justus Liebigs Ann der Chem 718:208–223. doi:10.1002/jlac.19687180119

    Article  CAS  Google Scholar 

  2. Haugland RP (2005) the handbook: a guide to fluorescent probes and labeling technologies, 10th ed. 1126

  3. Coskun A, Akkaya EU (2005) Ion sensing coupled to resonance energy transfer: a highly selective and sensitive ratiometric fluorescent chemosensor for Ag(I) by a modular approach. J Am Chem Soc 127:10464–10465. doi:10.1021/ja052574f

    Article  CAS  PubMed  Google Scholar 

  4. Rurack K, Kollmannsberger M, Resch-Genger U, Daub J (2000) A selective and sensitive fluoroionophore for Hg II, Ag I, and Cu II with virtually decoupled fluorophore and receptor units. J Am Chem Soc 122:968–969. doi:10.1021/ja992630a

    Article  CAS  Google Scholar 

  5. Coskun A, Akkaya EU (2006) Signal ratio amplification via modulation of resonance energy transfer: proof of principle in an emission ratiometric Hg(II) sensor. J Am Chem Soc 128:14474–14475. doi:10.1021/ja066144g

    Article  CAS  PubMed  Google Scholar 

  6. Zeng L, Miller EW, Pralle A et al (2006) A selective turn-on fluorescent sensor for imaging copper in living cells. J Am Chem Soc 128:10–11. doi:10.1021/ja055064u

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Coskun A, Deniz E, Akkaya EU (2005) Effective PET and ICT switching of boradiazaindacene emission: a unimolecular, emission-mode, molecular half-subtractor with reconfigurable logic gates. Org Lett 7:5187–5189. doi:10.1021/ol052020h

    Article  CAS  PubMed  Google Scholar 

  8. Saki N, Dinc T, Akkaya EU (2006) Excimer emission and energy transfer in cofacial boradiazaindacene (BODIPY) dimers built on a xanthene scaffold. Tetrahedron 62:2721–2725. doi:10.1016/j.tet.2005.12.021

    Article  CAS  Google Scholar 

  9. Coskun A, Baytekin BT, Akkaya EU (2003) Novel fluorescent chemosensor for anions via modulation of oxidative PET: a remarkable 25-fold enhancement of emission. Tetrahedron Lett 44:5649–5651. doi:10.1016/S0040-4039(03)01365-0

    Article  CAS  Google Scholar 

  10. Ekmekci Z, Yilmaz MD, Akkaya EU (2008) A monostyryl-boradiazaindacene (BODIPY) derivative as colorimetric and fluorescent probe for cyanide ions. Org Lett 10:461–464. doi:10.1021/ol702823u

    Article  CAS  PubMed  Google Scholar 

  11. Li F, Yang SI, Ciringh Y et al (1998) Design, synthesis, and photodynamics of light-harvesting arrays comprised of a porphyrin and one, two, or eight boron-dipyrrin accessory pigments. J Am Chem Soc 120:10001–10017. doi:10.1021/ja9812047

    Article  CAS  Google Scholar 

  12. Yilmaz MD, Bozdemir OA, Akkaya EU (2006) Light harvesting and efficient energy transfer in a boron-dipyrrin (BODIPY) functionalized perylenediimide derivative. Org Lett 8:2871–2873. doi:10.1021/ol061110z

    Article  CAS  PubMed  Google Scholar 

  13. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932. doi:10.1021/cr078381n

    Article  CAS  PubMed  Google Scholar 

  14. Wood TE, Thompson A (2007) Advances in the chemistry of dipyrrins and their complexes. Chem Rev 107:1831–1861. doi:10.1021/cr050052c

    Article  CAS  PubMed  Google Scholar 

  15. Ziessel R, Ulrich G, Harriman A (2007) The chemistry of Bodipy: a new El Dorado for fluorescence tools. New J Chem 31:496. doi:10.1039/b617972j

    Article  CAS  Google Scholar 

  16. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317. doi:10.1038/86684

    Article  CAS  PubMed  Google Scholar 

  17. Burghart A, Kim H, Welch MB et al (1999) 3,5-Diaryl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) Dyes: synthesis, spectroscopic, electrochemical, and structural properties. J Org Chem 64:7813–7819. doi:10.1021/jo990796o

    Article  CAS  Google Scholar 

  18. Yamada K, Toyota T, Takakura K et al (2001) Preparation of BODIPY probes for multicolor fluorescence imaging studies of membrane dynamics. New J Chem 25:667–669. doi:10.1039/b100757m

    Article  CAS  Google Scholar 

  19. Killoran J, Allen L, Gallagher JF, et al. (2002) Synthesis of BF2 chelates of tetraarylazadipyrromethenes and evidence for their photodynamic therapeutic behaviour. Chemical Communications 1862–1863. doi: 10.1039/b204317c

  20. Gorman A, Killoran J, O’Shea C et al (2004) In vitro demonstration of the heavy-atom effect for photodynamic therapy. J Am Chem Soc 126:10619–10631. doi:10.1021/ja047649e

    Article  CAS  PubMed  Google Scholar 

  21. Chen J, Burghart A, Derecskei-Kovacs A, Burgess K (2000) 4,4-Difluoro-4-bora-3a,4a-diaza- s -indacene (BODIPY) dyes modified for extended conjugation and restricted bond rotations. J Org Chem 65:2900–2906. doi:10.1021/jo991927o

    Article  CAS  PubMed  Google Scholar 

  22. Zhao W, Carreira EM (2005) Conformationally restricted aza-bodipy: a highly fluorescent, stable, near-infrared-absorbing dye. Angew Chem (Int ed Engl) 44:1677–1679. doi:10.1002/anie.200461868

    Article  CAS  Google Scholar 

  23. Zhao W, Carreira EM (2006) Conformationally restricted aza-BODIPY: highly fluorescent, stable near-infrared absorbing dyes. Chem (Weinheim Bergstrasse, Germany) 12:7254–7263. doi:10.1002/chem.200600527

    CAS  Google Scholar 

  24. Chen J, Burghart A, Wan C-W et al (2000) Synthesis and spectroscopic properties of 2-ketopyrrole–BF2 complexes: a new class of fluorescent dye. Tetrahedron Lett 41:2303–2307. doi:10.1016/S0040-4039(00)00166-0

    Article  CAS  Google Scholar 

  25. Wada M, Ito S, Uno H et al (2001) Synthesis and optical properties of a new class of pyrromethene–BF2 complexes fused with rigid bicyclo rings and benzo derivatives. Tetrahedron Lett 42:6711–6713. doi:10.1016/S0040-4039(01)01299-0

    Article  CAS  Google Scholar 

  26. Shen Z, Röhr H, Rurack K et al (2004) Boron-diindomethene (BDI) dyes and their tetrahydrobicyclo precursors--en route to a new class of highly emissive fluorophores for the red spectral range. Chem (Weinheim Bergstrasse, Germany) 10:4853–4871. doi:10.1002/chem.200400173

    CAS  Google Scholar 

  27. Goeb S, Ziessel R (2007) Convenient synthesis of green diisoindolodithienylpyrromethene-dialkynyl borane dyes. Org Lett 9:737–740. doi:10.1021/ol0627404

    Article  CAS  PubMed  Google Scholar 

  28. Umezawa K, Nakamura Y, Makino H et al (2008) Bright, color-tunable fluorescent dyes in the visible-near-infrared region. J Am Chem Soc 130:1550–1551. doi:10.1021/ja077756j

    Article  CAS  PubMed  Google Scholar 

  29. Rurack K, Kollmannsberger M, Daub J (2001) Molecular switching in the near infrared (NIR) with a functionalized boron-dipyrromethene dye this work was supported by the Deutsche Forschungsgemeinschaft (Da 92/24-1). Angew Chem (Int ed Engl) 40:385–387. doi:10.1002/1521-3773

    Article  CAS  Google Scholar 

  30. Atilgan S, Ekmekci Z, Dogan AL, et al. (2006) Water soluble distyryl-boradiazaindacenes as efficient photosensitizers for photodynamic therapy. Chemical communications (Cambridge, England) 4398–400. doi:10.1039/b612347c

  31. Deniz E, Isbasar GC, Bozdemir OA et al (2008) Bidirectional switching of near IR emitting boradiazaindacene fluorophores. Org Lett 10:3401–3403. doi:10.1021/ol801062h

    Article  CAS  PubMed  Google Scholar 

  32. Atilgan S, Ozdemir T, Akkaya EU (2008) A sensitive and selective ratiometric near IR fluorescent probe for zinc ions based on the distyryl-bodipy fluorophore. Org Lett 10:4065–4067. doi:10.1021/ol801554t

    Article  CAS  PubMed  Google Scholar 

  33. Atilgan S, Kutuk I, Ozdemir T (2010) A near IR di-styryl BODIPY-based ratiometric fluorescent chemosensor for Hg(II). Tetrahedron Lett 51:892–894. doi:10.1016/j.tetlet.2009.12.025

    Article  CAS  Google Scholar 

  34. Zhang X, Xiao Y, Qi J et al (2013) Long-wavelength, photostable, two-photon excitable BODIPY fluorophores readily modifiable for molecular probes. J Org Chem 78:9153–9160. doi:10.1021/jo401379g

    Article  CAS  PubMed  Google Scholar 

  35. Zhao C, Zhang Y, Wang X, Cao J (2013) Development of BODIPY-based fluorescent DNA intercalating probes. J Photochem Photobiol A Chem 264:41–47

    Article  CAS  Google Scholar 

  36. Zheng Q, Xu G, Prasad PN (2008) Conformationally restricted dipyrromethene boron difluoride (BODIPY) dyes: highly fluorescent, multicolored probes for cellular imaging. Chem (Weinheim Bergstrasse, Germany) 14:5812–5819. doi:10.1002/chem.200800309

    CAS  Google Scholar 

  37. Puntoriero F, Nastasi F, Bura T et al (2011) Molecular logics: a mixed bodipy–bipyridine dye behaving as a concealable molecular switch. New J Chem 35:948. doi:10.1039/c0nj00770f

    Article  CAS  Google Scholar 

  38. Kolemen S, Bozdemir OA, Cakmak Y et al (2011) Optimization of distyryl-Bodipy chromophores for efficient panchromatic sensitization in dye sensitized solar cells. Chem Sci 2:949. doi:10.1039/c0sc00649a

    Article  CAS  Google Scholar 

  39. Kolemen S, Cakmak Y, Erten-Ela S et al (2010) Solid-state dye-sensitized solar cells using red and near-IR absorbing Bodipy sensitizers. Org Lett 12:3812–3815. doi:10.1021/ol1014762

    Article  CAS  PubMed  Google Scholar 

  40. Erten-Ela S, Yilmaz MD, Icli B et al (2008) A panchromatic boradiazaindacene (BODIPY) sensitizer for dye-sensitized solar cells. Org Lett 10:3299–3302. doi:10.1021/ol8010612

    Article  CAS  PubMed  Google Scholar 

  41. Zhao Y, Zhang Y, Lv X et al (2011) Through-bond energy transfer cassettes based on coumarin–Bodipy/distyryl Bodipy dyads with efficient energy efficiences and large pseudo-Stokes’ shifts. J Mater Chem 21:13168. doi:10.1039/c1jm12503f

    Article  CAS  Google Scholar 

  42. Guliyev R, Coskun A, Akkaya EU (2009) Design strategies for ratiometric chemosensors: modulation of excitation energy transfer at the energy donor site. J Am Chem Soc 131:9007–9013. doi:10.1021/ja902584a

    Article  CAS  PubMed  Google Scholar 

  43. Eggenspiller A, Takai A, El-Khouly ME et al (2012) Synthesis and photodynamics of fluorescent blue BODIPY-porphyrin tweezers linked by triazole rings. J Phys Chem A 116:3889–3898. doi:10.1021/jp300415a

    Article  CAS  PubMed  Google Scholar 

  44. Qin W, Baruah M, De Borggraeve WM, Boens N (2006) Photophysical properties of an on/off fluorescent pH indicator excitable with visible light based on a borondipyrromethene-linked phenol. J Photochem Photobiol A Chem 183:190–197. doi:10.1016/j.jphotochem.2006.03.015

    Article  CAS  Google Scholar 

  45. Rurack K, Kollmannsberger M, Daub J (2001) Molekulares Schalten im nahen Infrarot (NIR) mit einem funktionalisierten Bordipyrromethen-Farbstoff. Angew Chem 113:396–399. doi:10.1002/1521-3757(20010119)113:2<396::AID-ANGE396>3.0.CO;2-W

    Article  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, et al. (2009) Gaussian 09 C.01

  47. Treutler O, Ahlrichs R (1995) Efficient molecular numerical integration schemes. J Chem Phys 102:346. doi:10.1063/1.469408

    Article  CAS  Google Scholar 

  48. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372. doi:10.1063/1.464304

    Article  CAS  Google Scholar 

  49. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  50. Hehre WJ (1976) Ab initio molecular orbital theory. Acc Chem Res 9:399–406. doi:10.1021/ar50107a003

    Article  CAS  Google Scholar 

  51. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464. doi:10.1016/0009-2614(96)00440-X

    Article  CAS  Google Scholar 

  52. Furche F, Rappoport D (2005) Computational photochemistry (Google eBook). 368

  53. Gabe Y, Ueno T, Urano Y et al (2006) Tunable design strategy for fluorescence probes based on 4-substituted BODIPY chromophore: improvement of highly sensitive fluorescence probe for nitric oxide. Anal Bioanal Chem 386:621–626. doi:10.1007/s00216-006-0587-y

    Article  CAS  PubMed  Google Scholar 

  54. Furche F, Ahlrichs R (2002) Adiabatic time-dependent density functional methods for excited state properties. J Chem Phys 117:7433. doi:10.1063/1.1508368

    Article  CAS  Google Scholar 

  55. Leszczynski J, Shukla M (2009) Practical aspects of computational chemistry: methods. Concepts Appl (Google eBook) 484

  56. Scalmani G, Frisch MJ, Mennucci B et al (2006) Geometries and properties of excited states in the gas phase and in solution: theory and application of a time-dependent density functional theory polarizable continuum model. J Chem Phys 124:94107. doi:10.1063/1.2173258

    Article  PubMed  Google Scholar 

  57. Valeur B, Berberan-Santos MN (2013) Molecular fluorescence: principles and applications (Google eBook), 2 nd. 500

  58. Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255:327–335. doi:10.1016/0009-2614(96)00349-1

    Article  CAS  Google Scholar 

  59. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093. doi:10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

One of the authors, Kishor G. Thorat, is very thankful to CSIR for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ponnadurai Ramasami or Nagaiyan Sekar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 3.39 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thorat, K.G., Bhakhoa, H., Ramasami, P. et al. NIR-Emitting Boradiazaindacene Fluorophores -TD-DFT Studies on Electronic Structure and Photophysical Properties. J Fluoresc 25, 69–78 (2015). https://doi.org/10.1007/s10895-014-1481-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1481-1

Keywords

Navigation